User Manual

EnergoM-PDS

Wireless Partial Discharge Sensor

User Manual

Version:1.10

Revision 2024.06

Read me

When you use EnergoM-PDS partial discharge sensor, be sure to read this user manual carefully and be able to fully understand the implications, the correct guidance of operations in accordance with user manual, which will help you make better use of EnergoM-PDS partial discharge sensor, and help to solve the various problems at the scene.

1. Always keep safe distance between the high voltage part and the instrument, probe and operator.

- 2. Measurements must not be taken when thunderstorms are nearby.
- 3. Do not operate the instrument or accessories in explosive atmospheres.
- 4. After the battery alarm of the instrument, please turn off the power to charge.
- 5. Do not open the instrument without permission, this will affect the warranty of the product. The factory is not responsible for self-disassembly.

6. When the instrument is transported, it should avoid rain erosion and prevent collision and falling.

7. When storing and keeping the instrument, attention should be paid to the ambient temperature and humidity, and it should be protected from dust, moisture, shock, acid, and corrosive gas.

- Please read this user manual carefully
- Please save this document

1 SUMMARIZE	
2 TEST PRINCIPLE	4
3 SENSOR INTRODUCTION	6
3.1 ULTRASONIC MEASUREMENT3.2 TEV MEASUREMENT3.3 UHF MEASUREMENT	7
4 TECHNICAL SPECIFICATION	9
5 COMMUNICATION INTERFACE	9
5.1 MODBUS © PROTOCOL 5.2 Register Map 5.2.1 Read the device alarm data (Functionx02)	11
5.2.1 READ THE DEVICE ALARM DATA (1 ORCHONA02) 5.2.2 READ THE DATA COLLECTED BY THE RECEIVER (FUNCTIONX03) 5.2.3 READ THE SETTING VALUE (FUNX04)	
5.2.4 WRITE THE SINGLE SETTING VALUE (FUNX06) 5.2.5 WRITE THE MULTIPLE SETTING VALUE (FUNX10)	14
6 SAFETY CONSIDERATIONS	15
7 TECHNICAL SERVICE	

Directory

1.- SUMMARIZE

Partial discharge (PD) is closely related to insulating conditions of electrical apparatus in power systems. When PD occur in insulations, small currents arise. Without any treatment, the discharge currents bridge the electrodes completely which certainly results in large short-circuit current and breaks down the equipment. PD phenomenon is an indication of degradation of insulation materials. Thus, the detection of PD at early stages plays a crucial role in increasing the service life of power equipment.

The PDS3W partial discharge sensor integrates ultrasonic, TEV (Transient Earth Voltage) and UHF (Ultra High Frequency) technologies to detect partial discharges in middle-high voltage equipment. PDS3W can monitoring of transformers, high-voltage switchgear, GIS (Gas-Insulated Switchgear), and cable joints. PDS3W is highly portable, offers fast measurement speeds, and boasts strong anti-interference capabilities, making it suitable for various field applications.

FEATURES

- Rugged, compact design;
- Non-intrusive detection method;
- Strong magnets to attach sensor;
- Rapid detection of partial discharge conditions;
- Easy to Install, integrated transient (Over-voltage) protection;
- Suitable for extreme environment, outdoor substation;
- Measures PD in high-frequency UHF range;
- Ensures sensitive PD measurements in noisy environments;
- Designed specifically for PD detection at HV cable terminations;
- RS485, Modbus-RTU, SCADA systems.

APPLICATIONS

- Factory and on-site testing;
- Power transformers;
- Medium and high pressure connections;
- Power coils, motors;
- Gas-insulated integrated circuits (GIS);
- Industrial motor equipment;
- High pressure components: sleeves, insulators, containers, coil terminations, bus wires.

2.- TEST PRINCIPLE

PDS3W supports three monitoring technologies: ultrasonic (AE), transient low voltage (TEV) and ultra-high frequency (UHF). Multiple technologies work together to provide more comprehensive status monitoring of the switch cabinet.

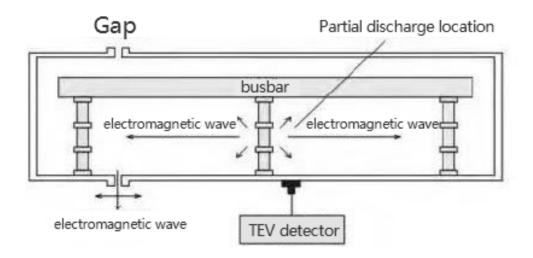


Figure 1. TEV detection mechanism

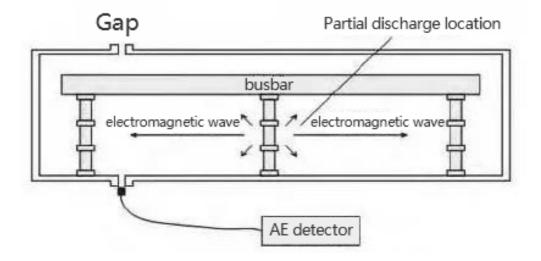


Figure 2. Ultrasonic detection mechanism

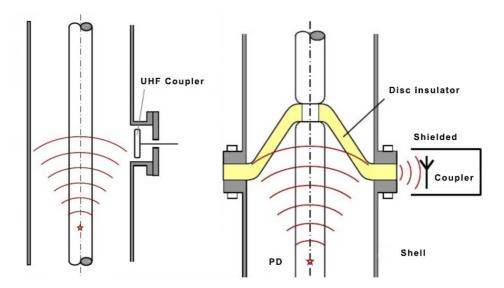


Figure 3. UHF detection mechanism

PDS3W communicates with the acquisition terminal through the LoRa double encrypted wireless receiver to monitor the partial discharge signal of the switchgear. The data uploaded includes: partial discharge peak value, partial discharge average value, discharge times, alarm signal and battery power of the device.

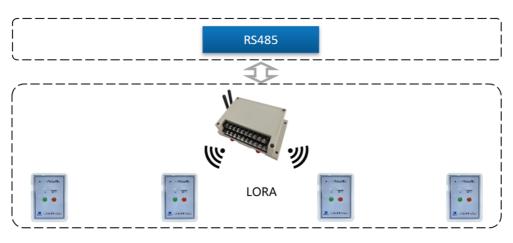


Figure 4. Application diagram

3.- SENSOR INTRODUCTION

3.1.- Ultrasonic measurement

If you choose the external ultrasonic sensor to measure the partial discharge of the switchgear, you hardly need to do other operations or settings after starting up, Because the external ultrasonic sensor is selected by default after the product is turned on, the upper left of the screen will display which sensor is currently connected.

In the ultrasonic measurement mode, the measurement data is dBuv, because dBuV is a logarithmic function value based on 1uV, therefore, the measured data in the ultrasonic mode can be positive or negative. According to the processing capacity of the ultrasonic amplifier of this product, it can reach -6dBuV The test ranges to 68dBuV, the larger the negative value, the smaller the ultrasonic signal, the closer to Ouv, not negative! Usually the measured data in an interference-free environment is between -6dBuV and odBuV.

Insulation condition of switchgear:

Data	Definition
-6~0dBuV, no discharge sound	No partial discharge.
0 ~ 6dBuV, short discharge sound	Slight discharge, and attention should be paid to it later.
Above 6dBuV, have discharge sound	Obvious discharge, should be judged in combination with TEV.

Note:

The demarcation point (6dBuV) is slightly different in different regions, so it is recommended to use 6dBuV as the demarcation point, so that the operating status of the switchgear can be warned in advance.

3.2. - TEV measurement

In the TEV measurement mode, the reference pulse count value P/Cycle is also required, and the pulse number and amplitude comprehensively measure the health of the switchgear.

When the environmental value is large, it is necessary to find out the interference source. The interference source of TEV is different from that of ultrasonic. Ultrasonic interference is generally limited to a limited space, while TEV interference affects the entire space through radio frequency, such as electric welding machines, frequency converters, walkie-talkies, Wireless broadcasting stations, etc. Compared with ultrasonic interference, such interference signals are sometimes difficult to avoid or clear, so it is recommended to use ultrasonic measurement when the environment (interference) value is detected to be large.

Data	Definition
The reading is <20dB.	No partial discharge, Recheck once a year.
The reading is 20-29dB.	Slight discharge.
The reading is 29-40dB.	Moderate partial discharge should report and shorten the inspection cycle.
The reading is 40-50dB.	Serious partial discharge should report and shorten the inspection cycle, and be checked when power failure.
The reading is 50-60dB.	Severe partial discharge, power outage and maintenance as soon as possible.

Insulation condition of switchgear:

3.3. - UHF measurement

UHF sensor principle is to detect the ultra-high frequency electromagnetic wave signal generated by partial discharge in power equipment through ultra-high frequency sensors, so as to obtain relevant information of partial discharge and realize partial discharge monitoring.

Since the corona interference on site is mainly concentrated below the 300MHz frequency band, the ultra-high frequency method can effectively avoid the corona interference on site, has high sensitivity and anti-interference ability, can realize the location of discharge source, can identify the type of insulation defects, etc., is sensitive to the speed of pulse change, is more suitable for internal discharge of dielectrics, can make up for the shortcomings of ultrasonic and transient ground voltage detection methods, and effectively improve the accuracy of diagnosis.

Name	Туре	Definition
High frequency transformer	HFCT measurement	For Cable, Frequency: 1 ~ 30MHz.
UHF sensor	UHF measurement	For GIS, Frequency: 300 ~ 2000MHz.

4.- TECHNICAL SPECIFICATION

Sensor common

Power supply	Customized lithium battery (normally use 4-5 years)
Wireless band	433MHz ~2.4GHz optional
Signal transmission distance	Up to 80m (260 feet)
Static power consumption	<10mW
Installation method	4* strong magnet, wall mount
Sampling period	4S
TEV sensor	
Detect range	0~60 dBmV
Pass band	3~100MHz
Resolution / Accuracy	1dBmV / ±1dBmV
Ultrasonic sensor (AE)	
Detect range	-7 dB μ V ~ 68dB μ V
Resolution / Accuracy	1dBµV
Sensitivity	-65 dB (0 dB=1 volt/µbar rms SPL)
Sensor center frequency	40 KHz
UHF sensor	
Detect range	-70~10dBm
Pass band	300~1500MHz
Average equivalent height	≥10mm
Noise detection range	30~130dB
Receiver	
Power supply	24VDC
Data upload cycle	120 minutes
Networking mode	LORA self-organizing network
Communication protocol	RS485/Modbus
Extension interface	3 Channels RS485

5.- COMMUNICATION INTERFACE

This document defines the communication protocol specification of EnergoM-PDS, please strictly

follow this communication protocol to connect with the device.

5.1.- MODBUS © protocol

Modbus RTU Frame Format:

Address code	1 BYTE	Slave device address 1-247
Function code	1 BYTE	Indicates the function codes like read coils / inputs
Data code	4 BYTE	Starting address, high byte Starting address, low byte Number of registers, high byte Number of registers, low byte
Error Check code	2 BYTE	Cyclical Redundancy Check (CRC)

MODBUS FUNCTIONS

Code	Meaning	Description
FUNCTION 02	Read DI status	Reads the ON/OFF status of DI
FUNCTION 03	Read holding register	Read device setting data
FUNCTION 04	Read input register	Read device measurement data
FUNCTION 06	Write Single Register	Writes a value into a single holding register.
FUNCTION 10	Write Multiple Register	Writes values into a sequence of holding registers

Note:

Starting address:0X0000, the first byte is the high bit, and the second byte is the low bit.

5.2.- Register Map

EnergoM-PDS use 12VDC power supply, Default MODBUS parameter:

5.2.1.- Read the device alarm data (Functionx02)

Register	Definition
0	Sensor 1-16 Alarm or not
1	Sensor 17-32 Alarm or not
2	Sensor 33-48 Alarm or not

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Sensor 8	Sensor 7	Sensor 6	Sensor 5	Sensor 4	Sensor 3	Sensor 2	Sensor 1

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
Sensor 1	6 Sensor 15	Sensor 14	Sensor 13	Sensor 12	Sensor 11	Sensor 10	Sensor 9

Register	Definition
0	Sensor 1 Battery power
1	Sensor 1 AE discharges times
2	Sensor 1 AE discharge peak value
3	Sensor 1 AE discharge average value
4	Sensor 1 TEV discharges times
5	Sensor 1 TEV discharge peak value
6	Sensor 1 TEV discharge average value
7	Sensor 1 UHF discharges times
8	Sensor 1 UHF discharge peak value
9	Sensor 1 UHF discharge average value
13	Sensor 1 Data upload time (year, month)
14	Sensor 1 Data upload time (day, hour)
15	Sensor 1 Data upload time (minute, second)
16~31	Sensor 2 data
32~47	Sensor 3 data
48~63	Sensor 4 data
64~79	Sensor 5 data

5.2.2.- Read the data collected by the receiver (Functionx03)

5.2.3.- Read the setting value (Funx04)

Register	Definition
0	Reserved
1	Gateway address
2	Baud rate
3	Parity bit
4	Number of sensors
5	Sensor data upload time (s)
6	Local time (year, month)
7	Local time (day, hour)
8	Local time (minutes, seconds)
9	AE setting value

10	TEV setting value
11	UHF setting value

Register	Definition
0	Reserved
1	Gateway address
2	Baud rate
3	Parity bit
4	Number of sensors
5	Sensor data upload time (s)
6	Local time (year, month)
7	Local time (day, hour)
8	Local time (minutes, seconds)
9	AE setting value
10	TEV setting value
11	UHF setting value

5.2.4.- Write the single setting value (Funx06)

5.2.5.- Write the multiple setting value (Funx10)

Register	Definition
0	Reserved
1	Gateway address
2	Baud rate
3	Parity bit
4	Number of sensors
5	Sensor data upload time (s)
6	Local time (year, month)
7	Local time (day, hour)
8	Local time (minutes, seconds)
9	AE setting value
10	TEV setting value
11	UHF setting value

6.- SAFETY CONSIDERATIONS

All installation specification described at the previous chapters named: **INSTALLATION AND STARTUP, INSTALLATION MODES and SPECIFICATIONS.**

Please note that with the instrument powered on, the terminals could be dangerous to touching and cover opening actions or elements removal may allow accessing dangerous parts. This instrument is factory-shipped at proper operation condition.

- The device must have a professional installation and maintenance.
- Any operation of the device, you must cut off the input signal and power.