POWER NETWORK

PARAMETER

ANALYZER

N10

SERIAL INTERFACE SERVICE MANUAL

CONTENTS:

1. PREFACE -4
2. DESCRIPTION OF THE MODBUS PROTOCOL -4
2.1. ASCII framing -5
2.2. RTU framing -5
2.3. Characteristic of frame fields -6
2.4. LRC calculation -7
2.5. CRC calculation -7
2.6. Character formation during serial transmission -8
2.7. Transaction interruption -8
3. FUNCTION DESCRIPTION -8
3.1. Reading of N -registers (code 03) -8
3.2. Record of values into the register (code 06) -9
3.3. Record into N-registers (code 16) -9
3.4. Report identifying the device (code 17) 10
4. ERROR CODES 10
5. REGISTER MAP OF THE N10 METER 12
APPENDIX A - CALCULATION OF THE CHECKSUM 20

1. PREFACE

The digital programmable N10 meter destined to measure parameters of power networks has been provided with a serial interface in RS-485 standard to communicate with other devices.
The asynchronous communication protocol MODBUS has been implemented on this serial interface. The configuration of serial interface parameters has been described in the Service Manual of the N10 meter. Composition of serial interface parameters concerning N10 meter:

- Meter address	$1 \ldots 32$
- Transmission speed	$300 / 600 / 1200 / 2400 / 4800 / 9600 / 19,000 \mathrm{bits} / \mathrm{sec}$
- Working modes	ASCII, RTU
- Information unit	ASCII: 8N1, 7E1, 701
	RTU: 8N2, 8E1, 801
- Maximal response time	300 ms

Explanation of some abbreviations:

ASCII = American Standard Code for Information Interchange
RTU $=$ Remote Terminal Unit
LRC = Longitudinal Redundancy Check
CRC = Cyclic Redundancy Check
$\mathbf{C R}=\quad$ Carriage Return
LF = Line -Feed (Character)
MSB $=$ Most - Significant Bit

2. DESCRIPTION OF THE MODBUS PROTOCOL

The MODBUS interface is a standard adopted by manufacturers of industrial controllers for an asynchronous character exchange of information between different devices of measuring and controlling systems. It has the following features:

- Simple access rule to the interface grounded on the "master slave" principle,
- Protection of transmitted messages against errors,
- Confirmation of remote order realisation and error signalling,
- Effective actions protecting against the system suspension,
- Taking advantage of the asynchronous character transmission.

Programmable controllers working in the MODBUS protocol can communicate with each other and with other devices using the master - slave technique, in which only one device (the master) can initiate transactions (called "queries").
The other devices (the slaves) respond by supplying the requested data to the master, or by taking the action requested in the query.

Typical master devices include host processors and programming pannels. Typical slaves include programmable controllers. The master can address individual slaves, or can initiate a broadcast message to all slaves. Slaves return a message called a „response" to queries that are addressed to them individually. (Responses are not returned to broadcast queries from the master).

The MODBUS protocol establishes the format for the master's query by placing into it the device address, a function code defining the requested action, any data to be sent, and an error checking code.
The slave's response message is also constructed using MODBUS protocol. It contains fields confirming the action taken, any data to be returned, and an error checking code.
If an error occured in receipt of the message, or if the slave is unable to perform the requested action, the slave will construct an error message and send it as its response.
At the message level, the MODBUS protocol still applies the master - slave principle even though the network communication method is peer-to-peer. If a controller orginates a message it does so as a master device, and expects a response from a slave device. Similarly, when a controller receives a message it constructs a slave response and returns it to the originating controller.
The format of transmitted information is as follows:

- Master \Rightarrow slave: device address, function code, data to be sent, error checking code
- Slave \Rightarrow master: sender address, confirmation, data to be sent, error checking code

Devices working in the MODBUS protocol can be setup to communicate on standard MODBUS networks using either of two transmission modes: ASCII or RTU. Users select the desired mode, along with the serial port communication parameters (baud rate, parity mode, etc) during configuration of each controller. The mode and serial parameters must be the same for all devices on a MODBUS network. In the MODBUS system, transmitted messages are placed into frames that are not related to serial transmission. These frames have a defined beginning and end. This enables for the receiving device to reject incomplete frames and signalling of related errors with them.
Taking into consideration the possibility to operate in one of two different transmission modes (ASCII or RTU), two frames have been defined.

2.1. ASCII framing

In the ASCII mode each byte of information is transmitted as two ASCII characters. The basic feature of this mode is that it allows to long intervals between characters within the message (to 1 sec) without causing errors.
A typical message frame is shown below.

Start	Address	Function	Data	LRC Check	End Index
1 char $/: /$	2 chars	2 chars	N chars	2 chars	2 chars CR LF

In ASCII mode messages start with a colon (:) character (,:"-ASCII 3Ahex) and end with a „, carriage return - line feed" (CR and LF characters). The frame information part is protected by the code LRC (Longitudinal Redundancy Check).

2.2. RTU Framing

In RTU mode, messages start with a silent interval of at least 3.5 character times.
This is most easily implemented as a multiple of character times at the baud rate that is being used on the network.

The frame format is shown below:

Start	Address	Function	Data	CRC Check	End Index
T1-T2-T3-T4	8 bits	8 bits	$\mathrm{N} \times$ 8bits	16 bits	T1-T2-T3-T4

Beginning and end indexes are marked symbolically as an interval equal to four lengths of the index (information unit). The checking code consists of 16 bits and emerges as the result of CRC calculation (Cyclical Redundancy Check) of the frame contents.

2.3. Characteristic of frame fields.

Address field

The address field of a message frame contains two characters (in ASCII mode) or eight bits (in RTU mode). Valid slave device address are in the range of 0-247 decimal. The individual slave devices are assigned addresses in the range of $0-247$. The master addresses the slave unit by placing the slave address in the frame address field. When the slave sends its response, it places its own address in this address field of the response to let the master know which slave is responding. The address 0 is used as a broadcast address recognized by all slave units connected to the bus.

Function field

The function code field of a message frame contains two characters (in ASCII mode) or eight bits (in RTU mode). Valid codes are in the range of 1-255 decimal.
When a message is sent from a master to a slave device, the function code field tells the slave what kind of action to perform. When the slave responds to the master, it uses the function code field to indicate either a normal (error-free) response or that some kind of error occured (called an exception response). For a formal response the slave simply echoes the original function code. For a formal response the slave returns a code that is equivalent to the original function code with its most significant logic 1.

The error code is placed on the data field of the response frame.

Data field

The data field is constructed using sets of two hexadecimal digits, in the range of 00 to FF hexadecimal. These can be made from a pair of ASCII characters or from one RTU character, according to the network's serial transmission mode.

The data field of messages sent from a master to slave devices contains additional information which the slave must use to take the action defined by the function code. This can include items like discrete and register addresses, the quantity of items to be handled, and count of actual data bytes in the field.
The data field can be non-existent (of zero length) in certain kinds of messages. For example, in a request from a master device for a slave to respond with its communications event log (function code OB hexdecimal) the slave does not require any additional information. The function code alone specifies the action.

Error checking field

Two kinds of error-checking methods are used for standard MODBUS networks. The error checking field contents depends upon the method that is being used.

ASCII

When ASCII mode is used for character framing, the error checking field contains two ASCII characters. The error check characters are the result of a Longitudinal Redundancy Check (LRC) calculation that is performed on the message contents, exclusive of the beginning „colon" and terminating CRLF characters. LRC characters are appended to the message as the last field preceding the CRLF characters.

RTU

When RTU mode is used for character framing, the error checking field containts a 16-bit value implemented as two 8-bit bytes. The error check value is the result of a Cyclical Redundancy Check calculation performed on a message contents.
The CRC field is appended to the message as the last field in the message. When this is done, the low-order byte of the field is appended first, followed by the high-order byte.

The CRC high-order byte is the last byte to be sent in the message.

2.4.LRC checking

The LRC is calculated by adding together sucesslve 8-bit bytes of the message, discarding any carries, and then two is complementing the result. It is performed on the ASCII message field contents excluding the „colon" character that begins the message, and excluding the CRLF pair at the end of the message.
The 8 -bit value of the LRC sum is placed at the frame end as two ASCII characters, first the character containing the older tetrad, and after it the character containing the younger LRC tetrad.

2.5. CRC checking

The generating procedure of CRC is realized according the following algorythm:

1. Load a 16-bit register with FFFF hex. Call this the CRC register.
2. Exclusive OR the first 8 -bit byte of the message with the low-order byte of the 16 bit CRC register, putting the result in the CRC register.
3. Shift the CRC register one bit to the right (towards the LSB), zero-filling the MSB. Extract and examine the LSB.
4. (If the LSB was 0): Repeat step 3 (another shift) (If the LSB was 1): Exclusive OR the CRC register with the polynomial value A001 hex.
5. Repeats steps 3 and 4 until 8 shifts have been performed. When this is done, a complete 8 -bit byte will have been processed.
6. Repeat steps 2 through 5 for the next 8 -bit byte of the message. Continue doing this until all bytes have been processed.
7. The final contents of the CRC register is the CRC value.
8. When the CRC is placed into the message, its upper and lower bytes must be swapped as described below.

2.6. Character formation during serial transmission

In the MODBUS protocol, characters are transmitted from the youngest to the oldest bit.
Organization of the information unit in the ASCII mode:

- 1 start bit,
- 7 data field bits,
- 1 even parity check bit (odd) or lack of even parity check bit,
- 1 stop bit at even parity check or 2 stop bits when lack of even parity check.

Organization of the information unit in the RTU mode:

- 1 start bit,
- 8 data field bits,
- 1 even parity check bit (odd) or lack of even parity check bit,
- 1 stop bit at even parity check or 2 stop bits when lack of even parity check.

2.7. Transaction interruption

In the master unit the user sets up the important parameter which is the "maximal response time on the query frame" after which exceeding, the transaction is interrupted.

This time is choice such that each slave unit working in the system (even the slowest,) normally will have the time to answer to the frame query.
An exceeding of this time attests therefore about an error and such is treated by the master unit.
If the unit slave will find out a transmission error it does not accomplish the order and does not send any answer. That causes an exceeding of the waiting time after the query frame and the transaction interruption.

3. FUNCTION DESCRIPTION

In the N10 meter following protocol functions has been implemented:

Code	Signification
03	Reading of n-register
06	Record of an individual register
16	Record of n-registers
17	Slave device identification

3.1. Reading of n-registers (code 03)

Demand:

The function enables the reading of values included in registers in being addressed slave device. Registers are 16 or 32-bit units, which can include numerical values bounded with changeable processes, and the like. The demand frame defines the 16-bit start address and the number of registers to read-out. The signification of the register contents with address data can be different for different device types. The function is not accessible in the broadcast mode.

Example: Reading of 3 registers beginning by the register with the 6 Bhex address.

Address	Function	Register Address $H \boldsymbol{H i}$	Register Address Lo	Number of Registers $\boldsymbol{H i}$	Number of Registers Lo	Checking sum
11	03	00	6 B	00	03	7 E

Answer:

Register data are packing beginning from the smallest address: first the older byte, then the younger register byte.
Example: the answer frame

Address	Function	Number Of bites	Value in the register $\mathbf{1 0 7}$ Hi	Value in the register $\mathbf{1 0 7}$ Lo	Value in the register $\mathbf{1 0 8}$ Hi	Value in the register $\mathbf{1 0 8}$ Lo	Value inthe register $\mathbf{1 0 9}$ Hi	Value in the register $\mathbf{1 0 9}$ Lo	Checking Sum
11	03	06	02	$2 B$	00	00	00	64	55

LRC

3.2. Record of values in the register (code 06)

Demand:

The function enables the modification of the register contents.
It is accessible in the broadcast mode.

Example

Address	Function	Register Address $\mathbf{H i}$	Register Address Lo	Value $\mathbf{H i}$	Value Lo	Checking sum
11	06	00	87	03	9 E	C 1

LRL

Answer:

The correct answer to a record requirement in the register is the retransmission of the message after accomplishing the operation.

Example

Address	Function	Register Address $\mathbf{H i}$	Register Address $\mathbf{L o}$	Value $\boldsymbol{H i}$	Value Lo	Checking sum
11	06	00	87	03		

3.3. Record in n-registers (code 16)

Demand:

The function is accessible in broadcast mode. It enables the modification of the register contents.

Example: Record of two registers beginning from the register adressed 136 .

Address	Function	Register Address $\boldsymbol{H i}$	Register Address Lo	$\begin{gathered} \text { Number } \\ \text { Of } \\ \text { registers } \\ H I \\ \hline \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { of registers } \\ L o \\ \hline \end{gathered}$	Number of bytes	Data Hi	$\begin{gathered} \text { Data } \\ \text { Lo } \end{gathered}$	Data Hi	$\begin{gathered} \text { Data } \\ \text { Lo } \end{gathered}$	Checking Sum
11	10	00	87	00	02	04	00	0A	01	02	45

Answer:

The correct answer includes the unit slave address, function code, starting address and the number of recorded registers.

Example

Address	Function	Register Address Hi	Register Address Lo	Number of registers $\mathbf{H i}$	Number of registers Lo	Checking sum
11	10	00	87	00	02	56

LRC

3.4. Report identifying the device (code 17)

Demand:

This function enables the user to obtain information about the device type, status and configuration depending on this.
Example

Address	Function	Checking Sum
11	11	DE

LRC

Answer:

The field „Device identificator" in the answer frame means the unique identificator of this class of device, however the other fields include parameters depended on the device type.

Example concerning the N10 meter

Slave address	Function	Byte number	Device identificator	Device state	Voltage range	Current sum	Checking sum
11	11	6	50	FF	0064	0001	

4. ERROR CODES

When the master device is broadcasting a demand to the slave device then, except for messages in the broadcast mode, it expects a correct answer. After sending the demand of the master unit one of the four possibilities can occur:

- If the slave unit receives the demand without a transmission error and can execute it correctly, then it returns a correct answer,
- If the slave unit does not receive the demand, no answer is returned. Timeout conditions for the demand will be fulfilled in the master device programme.
- If the slave unit receives the demand, but with transmission errors (even parity error of checking sum LRC or CRC), no answer is returned. Timeout conditions for the demand will be fulfilled in the master device programme.
- If the slave unit receives the demand without a transmission error but does not execute it correctly (e.g. if the demand is, the reading-out of a non-existent bit output or register), then it returns the answer including the error code, informing the master device about the error reason.
- A message with an incorrect answer includes two fields distinguishing it from the correct answer.

The function code field:

In the correct answer, the slave unit retransmits the function code from the demand message in the field of the answer function code. All function codes have the most-significant bit (MSB) equal zero (code values are under 80h). In the incorrect answer, the slave unit sets up the MSB bit of the function code at 1.
This causes that the function code value in the incorrect answer is exactly plus 80 h greater than it would be in a correct answer.
On the base of the function code with a set up MSB bit the programme of the master device can recognize an incorrect answer and can check the error code on the data field.

The data field:

In a correct answer the slave device can return data to the data field (certain information required by the master unit). In the incorrect answer the slave unit returns the error code to the data field. It defines conditions of the slave device which had produced the error.
An example considering a demand of a master device and the incorrect answer of the slave unit has been shown below:

Example: demand

Slave address	Function	Variable Address $\mathbf{H i}$	Variable Address Lo	Number of variables $H i$	Number of Variables Lo	Checking sum
0 A	01	04	A 1	00	01	4 F

LRC
Example: incorrect answer

Slave address	Function	Error code	Checking sum
0 A	81	02	73

LRC
In this example the master device addresses the demand to the slave unit with No10 (0Ah). The function code (01) serves to the read-out operation of the bit input state. Then this frame means the demand of the status readout of a one bit input with the address number: 1245 (04A1h).
If in the slave device there is no bit input with the given address, then the device returns the incorrect answer with the No 02 error code. This means a forbidden data address in the slave device. Possible error codes and their meanings are shown in the table below.

Code	Meaning
01	Forbidden function
02	Forbidden data address
03	Forbidden data value
04	Damage in the connected device
05	Confirmation
06	Occupied, message removed
07	Negative confirmation
08	Error of memory parity

5. REGISTER MAP OF THE N10 METER

Data included in the N 10 meter are located in 16-bit or 32-bit registers. Process variables and meter parameters are placed in the register addresses area in a way depending on the variable value type. Bits in the 16-bit register are numbered from the youngest to the oldest ones (b0-b15).
The register map has been devided into the following areas.

Address range	Value type	Description
$4000-4031$	Integer (16 bits)	The value is placed in one 16 bit register. Table 1 includes the register description. Registers can be read out and recorded.
$7000-7223$	Float (32 bits)	The value is placed in two successive $16-$ bit registers. Registers include these same data as 32-bit registers from the $7500-7611$ area. Example: registers 7000 and 7001 include the value from the register 7500, registers 7002 and 7003 include the value from the register 7501, etc. Registers serves only to read out.
$7500-7779$	Float (32 bits)	

Contents of 16-bit registers with addresses from 4000 to 4031

Table 1

Item	Register address	Symbol	Range unit	Description
1.	4000	Tr_I	1... 20000	Current transformer ratio
2.	4001	Tr_U	1... 4000	Voltage transformer ration
3.	4002	Ao_n	0... 34	Quantity on the continuous output, code from Table 2
4.	4003	Ao_L	80...120\%	Coeficient rescaling the output
5.	4004	A0_0	0, 1	Range of the continuous output
6.	4005	Po_n	0.35... 37	Quantity on the pulse output, code from Table 2
7.	4006	Po_c	0...9999	Constant of the pulse output
8.	4007	Pl_n	0; 38... 40	Quantity on the pulse input, code from Table 2
9.	4008	Pl_c	1... 9999	Constant of the external energy counter (pulse input)
10.	4009	PI_0	1	Cancellation of the external energy counter (counter of the pulse input)
11.	4010	EnP0	1	Cancellation of the active energy counter
12.	4011	Enq0	1	Cancellation of the reactive energy counter
13.	4012	EnS0	1	Cancellation of the apparent energy counter
14.	4013	PA_0	1	Cancellation of the 15-minut active power Pav (max and min value)
15.	4014	PA_t	1,2, 3	Averaging time of the Pav power 1-15 min., 2-30min., 3-60min
16.	4015	PA_S	0, 1	Synchronization of Pav power averaging with the real timer
17.	4016		0000... 9999	Access code change
18.	4017	A1_n	0, 1... 34	Two-state output 1 - Quantity, code from Table 2
19.	4018	A1on	0... 120 (\%)	Two-state output 1 - switch on value
20.	4019	A1oF	0... 120 (\%)	Two-state output 1 - switch off value
21.	4020	A2_n	0, 1... 34	Two-state output 2 - Quantity, code from Table 2
22.	4021	A2on	0...120(\%)	Two-state output 2 - switch on value
23.	4022	A2oF	0...120(\%)	Two-state output 2 - switch off value
24.	4023	A3_n	0, 1... 34	Two-state output 3 - Quantity, code from Table 2
25.	4024	A3on	0...120(\%)	Two-state output 3 - switch on value
26.	4025	A3oF	0...120(\%)	Two-state output 3 - switch off value
27.	4026	AL._dt	$0 . . .100 \mathrm{sec}$.	Time-lag in relay operation
28.	4027	Year	1998-2083	Year
29.	4028	MonDay		Date in the format: month* $100+$ day
30.	4029	HourMin		Time in the format: hour* $100+$ minute
31.	4030	ALR	0... 7	States of relay outputs:A1=bo, A2=b1, A3=b2 1 - output switched on
32.	4031	Harm	0, 1	The harmonic calculation mode is switched on.

Contents of 32-bit registers with addresses from 7500 to 7779

Table 2

Item	Code	Register address	Symbol $^{\text {Range }}$		
unit				\quad	Description
:---					
1					
00					

TABLE 2 (continuation)

40	38	7538	Enb_{z}	VArh	Reactive energy from an external counter
41	40	7539	$\mathrm{EnS}_{\mathrm{z}}$	VA	Apparent energy from an external counter
42	41	7540			Date - day, month
43	42	7541			Date-year
44	43	7542			Time- hours, minutes
45	44	7543			Time-secondes
46		7544, 7545	U_{1}	V	L1 phase voltage - min, max
47		7546, 7547	U_{2}	V	L2 phase voltage - min, max
48		7548, 7549	U_{3}	V	L3 phase voltage - min, max
49		7550, 7551	11	A	L1 phase current - min, max
50		7552, 7553	I_{2}	A	L2 phase current - min, max
51		7554,7555	13	A	L3 phase current - min, max
52		7556, 7557	P_{1}	W	L1 phase active power - min, max
53		7558, 7559	P_{2}	W	L2 phase active power - min, max
54		7560, 7561	P3	W	L3 phase active power - min, max
55		7562, 7563	S_{1}	VA	L1 phase apparent power - min, max
56		7564, 7565	S_{2}	VA	L2 phase apparent power - min, max
57		7566, 7567	S_{3}	VA	L3 phase apparent power - min, max
58		7568, 7569	Q1	VAr	L1 phase reactive power - min, max
59		7570, 7571	Q_{2}	VAr	L2 phase reactive power - min, max
60		7572, 7573	Q3	VAr	L3 phase reactive power - min, max
61		7574, 7575	Pf_{1}	Pf	L1 phase active power factor - min, max
62		7576, 7577	Pf_{2}	Pf	L2 phase active power factor - min, max
63		7578, 7579	Pf_{3}	Pf	L3 phase active power factor - min, max
64		7580, 7581	t φ_{1}		$\mathrm{t} \varphi 1=\mathrm{Q} 1 / \mathrm{P} 1, \mathrm{~L} 1$ phase - min, max
65		7582, 7583	t $\varphi 2$		t $22=$ Q2/P2, L2 phase - min, max
66		7584, 7585	t¢3		t 43 = Q3/P3, L3 phase - min, max
67		7586, 7587	Us	V	Mean three-phase voltage - min, max
68		7588, 7589	Is	A	Mean three-phase current - min, max
69		7590, 7591	P	W	Three-phase active power - min, max
70		7592, 7593	Q	VAr	Three-phase reactive power - min, max
71		7594, 7595	S	VA	Three-phase apparent power - min, max
72		7596, 7597	Pf	Pf	Active power factor - min, max
73		7598, 7599	t φ	t φ	Mean three-phase reactive power factor over active power factor - min, max
74		7600, 7601	f	Hz	Frequency - min, max
75		7602, 7603	U_{12}	V	L1-L2 phase-to-phase voltage - min, max
76		7604, 7605	U_{23}	V	L2-L3 phase-to-phase voltage - min, max
77		7606, 7607	U_{31}	V	L3-L1 phase-to-phase voltage - min, max
78		7608, 7609	U_{123}	V	Mean phase-to-phase voltage - min, max
79		7610, 7611	PAV	W	(e.g.) 15 minute mean active power) - min, max
80	45	7612	THDU1	\%	Relative harmonic content of L1 phase voltage
81	46	7613	THDU2	\%	Relative harmonic content of L2 phase voltage
82	47	7614	THDU3	\%	Relative harmonic content of L3 phase voltage

TABLE 2 (continuation)

83	48	7615	THD ${ }_{11}$	\%	Relative harmonic content of L1 phase current
84	49	7616	THD12	\%	Relative harmonic content of L2 phase current
85	50	7617	THD ${ }_{13}$	\%	Relative harmonic content of L3 phase current
86		7618, 7619	THDU1	\%	Relative harmonic content of L1 phase voltage - min,max
87		7620, 7621	THDU2	\%	Relative harmonic content of L2 phase voltage - min, max
88		7622, 7623	THDU3	\%	Relative harmonic content of L3 phase voltage - min, max
89		7624, 7625	THD ${ }_{11}$	\%	Relative harmonic content of L1 phase current - min, max
90		7626, 7627	THD ${ }_{12}$	\%	Relative harmonic content of L2 phase current - min, max
91		7628, 7629	THD ${ }_{13}$	\%	Relative harmonic content of L3 phase current - min, max
92		7630	HarU1[1]	\%	1st harmonic of L1 phase voltage
93		7631	HarU1[2]	\%	2nd harmonic of L1 phase voltage
94		7632	HarU1[3]	\%	3rd harmonic of L1 phase voltage
95		7633	HarU1[4]	\%	4th harmonic of L1 phase voltage
96		7634	HarU1[5]	\%	5 th harmonic of L1 phase voltage
97		7635	HarU1[6]	\%	6th harmonic of L1 phase voltage
98		7636	HarU1[7]	\%	7th harmonic of L1 phase voltage
99		7637	HarU1[8]	\%	8th harmonic of L1 phase voltage
100		7638	HarU1[9]	\%	9th harmonic of L1 phase voltage
101		7639	HarU1[10]	\%	10th harmonic of L1 phase voltage
102		7640	HarU1[11]	\%	11th harmonic of L1 phase voltage
103		7641	HarU1[12]	\%	12th harmonic of L1 phase voltage
104		7642	HarU1[13]	\%	13th harmonic of L1 phase voltage
105		7643	HarU1[14]	\%	14th harmonic of L1 phase voltage
106		7644	HarU1[15]	\%	15th harmonic of L1 phase voltage
107		7645	HarU1[16]	\%	16th harmonic of L1 phase voltage
108		7646	HarU1[17]	\%	17th harmonic of L1 phase voltage
109		7647	HarU1[18]	\%	18th harmonic of L1 phase voltage
110		7648	HarU1[19]	\%	19th harmonic of L1 phase voltage
111		7649	HarU1[20]	\%	20th harmonic of L1 phase voltage
112		7650	HarU1[21]	\%	21st harmonic of L1 phase voltage
113		7651	HarU1[22]	\%	22nd harmonic of L1 phase voltage
114		7652	HarU1[23]	\%	23rd harmonic of L1 phase voltage
115		7653	HarU1[24]	\%	24th harmonic of L1 phase voltage
116		7654	HarU1[25]	\%	25th harmonic of L1 phase voltage
117		7655	HarU2[1]	\%	1st harmonic of L2 phase voltage
118		7656	HarU2[2]	\%	2nd harmonic of L2 phase voltage
119		7657	HarU2[3]	\%	3rd harmonic of L2 phase voltage
120		7658	HarU2[4]	\%	4th harmonic of L2 phase voltage
121		7659	HarU2[5]	\%	5 th harmonic of L2 phase voltage
122		7660	HarU2[6]	\%	6 th harmonic of L2 phase voltage
123		7661	HarU2[7]	\%	7th harmonic of L2 phase voltage
124		7662	HarU2[8]	\%	8th harmonic of L2 phase voltage
125		7663	HarU2[9]	\%	9th harmonic of L2 phase voltage
126		7664	HarU2[10]	\%	10th harmonic of L2 phase voltage

TABLE 2 (continuation)

127	7665	HarU2[11]	\%	11th harmonic of L2 phase voltage
128	7666	HarU2[12]	\%	12th harmonic of L2 phase voltage
129	7667	HarU2[13]	\%	13th harmonic of L2 phase voltage
130	7668	HarU2[14]	\%	14th harmonic of L2 phase voltage
131	7669	HarU2[15]	\%	15th harmonic of L2 phase voltage
132	7670	HarU2[16]	\%	16th harmonic of L2 phase voltage
133	7671	HarU2[17]	\%	17th harmonic of L2 phase voltage
134	7672	HarU2[18]	\%	18th harmonic of L2 phase voltage
135	7673	HarU2[19]	\%	19th harmonic of L2 phase voltage
136	7674	HarU2[20]	\%	20th harmonic of L2 phase voltage
137	7675	HarU2[21]	\%	21st harmonic of L2 phase voltage
138	7676	HarU2[22]	\%	22nd harmonic of L2 phase voltage
139	7677	HarU2[23]	\%	23rd harmonic of L2 phase voltage
140	7678	HarU2[24]	\%	24th harmonic of L2 phase voltage
141	7679	HarU2[25]	\%	25th harmonic of L2 phase voltage
142	7680	HarU3[1]	\%	1st harmonic of L3 phase voltage
143	7681	HarU3[2]	\%	2nd harmonic of L3 phase voltage
144	7682	HarU3[3]	\%	3rd harmonic of L3 phase voltage
145	7683	HarU3[4]	\%	4th harmonic of L3 phase voltage
146	7684	HarU3[5]	\%	5th harmonic of L3 phase voltage
147	7685	HarU3[6]	\%	6th harmonic of L3 phase voltage
148	7686	HarU3[7]	\%	7th harmonic of L3 phase voltage
149	7687	HarU3[8]	\%	8th harmonic of L3 phase voltage
150	7688	HarU3[9]	\%	9th harmonic of L3 phase voltage
151	7689	HarU3[10]	\%	10th harmonic of L3 phase voltage
152	7690	HarU3[11]	\%	11th harmonic of L3 phase voltage
153	7691	HarU3[12]	\%	12th harmonic of L3 phase voltage
154	7692	HarU3[13]	\%	13th harmonic of L3 phase voltage
155	7693	HarU3[14]	\%	14th harmonic of L3 phase voltage
156	7694	HarU3[15]	\%	15th harmonic of L3 phase voltage
157	7695	HarU3[16]	\%	16th harmonic of L3 phase voltage
158	7696	HarU3[17]	\%	17th harmonic of L3 phase voltage
159	7697	HarU3[18]	\%	18th harmonic of L3 phase voltage
160	7698	HarU3[19]	\%	19th harmonic of L3 phase voltage
161	7699	HarU3[20]	\%	20th harmonic of L3 phase voltage
162	7700	HarU3[21]	\%	21st harmonic of L3 phase voltage
163	7701	HarU3[22]	\%	22nd harmonic of L3 phase voltage
164	7702	HarU3[23]	\%	23rd harmonic of L3 phase voltage
165	7703	HarU3[24]	\%	24th harmonic of L3 phase voltage
166	7704	HarU3[25]	\%	25th harmonic of L3 phase voltage
167	7705	Harl1[1]	\%	1st harmonic of L1 phase current
168	7706	Harl1[2]	\%	2nd harmonic of L1 phase current
169	7707	Harl1[3]	\%	3rd harmonic of L1 phase current
170	7708	Harl1[4]	\%	4th harmonic of L1 phase current
171	7709	Harl1[5]	\%	5th harmonic of L1 phase current
172	7710	Harl1[6]	\%	6th harmonic of L1 phase current
173	7711	Harl1[7]	\%	7th harmonic of L1 phase current
174	7712	Harl1[8]	\%	8th harmonic of L1 phase current

TABLE 2 (continuation)

175	7713	Harl1[9]	\%	9th harmonic of L1 phase current
176	7714	Harl1[10]	\%	10th harmonic of L1 phase current
177	7715	Harl1[11]	\%	11th harmonic of L1 phase current
178	7716	Harl1[12]	\%	12th harmonic of L1 phase current
179	7717	Harl1[13]	\%	13th harmonic of L1 phase current
180	7718	Harl1[14]	\%	14th harmonic of L1 phase current
181	7719	Harl1[15]	\%	15th harmonic of L1 phase current
182	7720	Harl1[16]	\%	16th harmonic of L1 phase current
183	7721	Harl1[17]	\%	17th harmonic of L1 phase current
184	7722	Harl1[18]	\%	18th harmonic of L1 phase current
185	7723	Harl1[19]	\%	19th harmonic of L1 phase current
186	7724	Harl1[20]	\%	20th harmonic of L1 phase current
187	7725	Harl1[21]	\%	21st harmonic of L1 phase current
188	7726	Harl1[22]	\%	22nd harmonic of L1 phase current
189	7727	Harl1[23]	\%	23rd harmonic of L1 phase current
190	7728	Harl1[24]	\%	24th harmonic of L1 phase current
191	7729	Harl1[25]	\%	25th harmonic of L1 phase current
192	7730	Harl2[1]	\%	1st harmonic of L2 phase current
193	7731	Harl2[2]	\%	2nd harmonic of L2 phase current
194	7732	Harl2[3]	\%	3rd harmonic of L2 phase current
195	7733	Harl2[4]	\%	4th harmonic of L2 phase current
196	7734	Harl2[5]	\%	5 th harmonic of L2 phase current
197	7735	Harl2[6]	\%	6 th harmonic of L2 phase current
198	7736	Harl2[7]	\%	7th harmonic of L2 phase current
199	7737	Harl2[8]	\%	8th harmonic of L2 phase current
200	7738	Harl2[9]	\%	9th harmonic of L2 phase current
201	7739	Harl2[10]	\%	10th harmonic of L2 phase current
202	7740	Harl2[11]	\%	11 th harmonic of $L 2$ phase current
203	7741	Harl2[12]	\%	12th harmonic of L2 phase current
204	7742	Harl2[13]	\%	13th harmonic of L2 phase current
205	7743	Harl2[14]	\%	14th harmonic of L2 phase current
206	7744	Harl2[15]	\%	15th harmonic of L2 phase current
207	7745	Harl2[16]	\%	16th harmonic of L2 phase current
208	7746	Harl2[17]	\%	17th harmonic of L2 phase current
209	7747	Harl2[18]	\%	18th harmonic of $L 2$ phase current
210	7748	Harl2[19]	\%	
211	7749	Harl2[20]	\%	20th harmonic of L2 phase current
212	7750	Harl2[21]	\%	21st harmonic of L2 phase current
213	7751	Harl2[22]	\%	22nd harmonic of L2 phase current
214	7752	Harl2[23]	\%	23rd harmonic of L2 phase current
215	7753	Harl2[24]	\%	24th harmonic of L2 phase current
216	7754	Harl2[25]	\%	25th harmonic of L2 phase current
217	7755	Harl3[1]	\%	1st harmonic of L3 phase current
218	7756	Harl3[2]	\%	2nd harmonic of L3 phase current
219	7757	Harl3[3]	\%	3rd harmonic of L3 phase current
220	7758	Harl3[4]	\%	4th harmonic of L3 phase current
221	7759	Harl3[5]	\%	5 th harmonic of L3 phase current
222	7760	Harl3[6]	\%	6 th harmonic of L3 phase current

TABLE 2 (continuation)

223		7761	Harl3[7]	$\%$	7th harmonic of L3 phase current
224		7762	Harl3[8]	$\%$	8th harmonic of L3 phase current
225		7763	Harl3[9]	$\%$	9th harmonic of L3 phase current
226		7764	Harl3[10]	$\%$	10th harmonic of L3 phase current
227		7765	Harl3[11]	$\%$	11th harmonic of L3 phase current
228		7766	Harl3[12]	$\%$	12th harmonic of L3 phase current
229		7767	Harl3[13]	$\%$	13th harmonic of L3 phase current
230		7768	Harl3[14]	$\%$	14th harmonic of L3 phase current
231		7769	Harl3[15]	$\%$	15th harmonic of L3 phase current
232		7770	Harl3[16]	$\%$	16th harmonic of L3 phase current
233		7771	Harl3[17]	$\%$	17th harmonic of L3 phase current
234		7772	Harl3[18]	$\%$	18th harmonic of L3 phase current
235		7773	Harl3[19]	$\%$	19th harmonic of L3 phase current
236		7774	Harl3[20]	$\%$	20th harmonic of L3 phase current
237		7775	Harl3[21]	$\%$	21st harmonic of L3 phase current
238		7776	Harl3[22]	$\%$	22nd harmonic of L3 phase current
239		7777	Harl3[23]	$\%$	23rd harmonic of L3 phase current
240		7778	Harl3[24]	$\%$	24th harmonic of L3 phase current
241		7779	Harl3[25]	$\%$	25th harmonic of L3 phase current

APPENDIX A

CALCULATION OF THE CHECKING SUM

In this appendix some examples of function in the C language for calculate the LRC checking sum for ASCII mode and the CRC checking sum for the RTU mode have been shown.

The function for LRC calculation has two arguments:

unsigned char* outMSg;	- Index for the communication buffer, including binary data
from which one should calculate LRC.	
unsigned short usDataLen;	- Number of bytes in the communication buffer.

The function returns LRC of unsigned chart type.

```
static unsigned charLRC (outMsg, usDataLen)
unsigned char* outMsg /* buffer to calculate LRC*/
unsigned short usDataLen; /* number of bytes in the buffer*/
{ /*LRC unitialization*/
    unsigned char uchLRC = 0
    while (usDataLen- -)
        uchLRC +=*outMsg++; /* add the buffer byte without transfer*/
return ((unsigned char) (-(char uchLRC))); /* return the sum in the completion code up two */
}
```

An example of function in C language calculating the CRC sum is presented below.
All possible values of CRC sum are placed in two tables.
The first table includes the oldest byte of all 256 possible values of the 16 -bit CRC field, however the second table includes the youngest byte.
The assignment of the CRC sum through tabel indexing is further more rapid than the calculation of a new CRC value for each sign of the communication buffer.

Note: The below function represents bytes of the sum CRC older/younger, and this way the CRC value returned by the function can be directly placed in the communication buffer.

The function serving to calculate CRC has two arguments:

unsigned char* puchMsg	Index for the communication buffer includ binary data from which one should calcul
unsigned short usDataLen;	Number of bytes in the communication bu
The function returns CRC of unsigned short type.	
unsigned short CRC16 (puchMsg, usDataLen)	
unsigned char* puchMsg;	/* Buffer to calculate CRC*/
unsigned short usDataLen	/* Number of bytes in the buffer*/
\{	
unsigned char uchCRChi $=0 x F F$	/*Initialization of the older CRC byte*/
unsigned char uchCRClo $=0 \times F F$	/*Initialization of the younger CRC byte*/

```
    while (usDataLen--)
    { ulndex = uchCRChi^ *puchMsg++; /* CRC calculation*/
    uchCRChi = uchCRClo ^ crc_hi[ulndex];
    uchCRClo = crc_lo[ulndex];
}
return(uchCRChi<<8 | uchCRClo);
}
//older CRC byte table/
const unsigned char crc_hi[ ]={
0x00, 0xC1, 0x81, 0x4\overline{0}, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40
};
//younger CRC byte table/
const unsigned char cre_lo[ ]=\{
\(0 \times 00,0 \times C 0,0 \times C 1,0 \times 0 \overline{1}, ~ 0 x C 3,0 x 03,0 \times 02,0 \times C 2,0 x C 6,0 \times 06,0 \times 07,0 x C 7,0 \times 05,0 \times C 5,0 x C 4\), \(0 x 04,0 x C C, 0 x 0 C, 0 x 0 D, 0 x C D, 0 x 0 F, 0 x C F, 0 x C E, 0 x 0 E, 0 x 0 A, 0 x C A, 0 x C B, 0 x 0 B, 0 x C 9,0 x 09\), \(0 \times 08,0 x C 8,0 x D 8,0 x 18,0 x 19,0 x D 9,0 x 1 B, 0 x D B, 0 x D A, 0 x 1 \mathrm{~A}, 0 \times 1 \mathrm{E}, 0 \times \mathrm{DE}, 0 \times \mathrm{DF}, 0 \times 1 \mathrm{~F}, 0 \times \mathrm{DD}\), \(0 x 1 \mathrm{D}, 0 x 1 \mathrm{C}, ~ 0 x D C, 0 x 14, ~ 0 x D 4, ~ 0 x D 5, ~ 0 x 15, ~ 0 x D 7, ~ 0 x 17, ~ 0 x 16, ~ 0 x D 6, ~ 0 x D 2, ~ 0 x 12, ~ 0 x 13, ~ 0 x D 3\), \(0 x 11,0 x D 1,0 x D 0,0 x 10,0 x F 0,0 x 30,0 x 31,0 x F 1,0 x 33,0 x F 3,0 x F 2,0 x 32,0 x 36,0 x F 6,0 x F 7\), \(0 \times 37,0 x F 5,0 \times 35,0 \times 34,0 x F 4,0 \times 3 C, 0 x F C, 0 x F D, 0 x 3 D, 0 x F F, 0 \times 3 F, 0 \times 3 E, 0 x F E, 0 \times F A, 0 x 3 A\), \(0 \times 3 B, 0 x F B, 0 x 39,0 x F 9,0 x F 8,0 x 38,0 x 28,0 x E 8,0 x E 9,0 x 29,0 x E B, 0 x 2 B, 0 x 2 A, 0 x E A, 0 x E E\), \(0 \times 2 \mathrm{E}, 0 \times 2 \mathrm{~F}, 0 \times \mathrm{EF}, 0 \times 2 \mathrm{D}, 0 \times \mathrm{D}, 0 \times \mathrm{C}, 0 \times 2 \mathrm{C}, 0 \times \mathrm{E} 4,0 \times 24,0 \times 25,0 \times E 5,0 \times 27,0 x E 7,0 \times E 6,0 \times 26\), \(0 \times 22,0 \times E 2,0 x E 3,0 \times 23,0 x E 1,0 x 21,0 \times 20,0 x E 0,0 x A 0,0 x 60,0 x 61,0 x A 1,0 x 63,0 x A 3,0 x A 2\), \(0 \times 62,0 \times 66,0 \times A 6,0 \times A 7,0 x 67,0 x A 5,0 \times 65,0 \times 64,0 x A 4,0 \times 6 \mathrm{C}, 0 \times A C, 0 x A D, 0 x 6 \mathrm{D}, 0 \times A F, 0 \times 6 \mathrm{~F}\), \(0 \times 6 \mathrm{E}, 0 \times \mathrm{AE}, 0 \times \mathrm{AA}, 0 \times 6 \mathrm{~A}, 0 \times 6 \mathrm{~B}, 0 \times \mathrm{AB}, 0 \times 69,0 \times \mathrm{A} 9,0 \times \mathrm{A}, 0 \times 68,0 \times 78,0 \times \mathrm{B} 8,0 \times \mathrm{B} 9,0 \times 79,0 \times \mathrm{BB}\), \(0 x 7 B, 0 x 7 A, 0 x B A, 0 x B E, 0 x 7 E, 0 x 7 F, 0 x B F, 0 x 7 D, 0 x B D, 0 x B C, 0 x 7 C, 0 x B 4,0 x 74,0 x 75,0 x B 5\), \(0 \times 77,0 \times B 7,0 \times B 6,0 \times 76,0 \times 72,0 \times B 2,0 x B 3,0 \times 73,0 \times B 1,0 \times 71,0 \times 70,0 \times B 0,0 \times 50,0 \times 90,0 \times 91\),
```



``` \(0 \times 5 \mathrm{D}, 0 \times 9 \mathrm{D}, 0 \times 5 \mathrm{~F}, 0 \times 9 \mathrm{~F}, 0 \times 9 \mathrm{E}, 0 \times 5 \mathrm{E}, 0 \times 5 \mathrm{~A}, 0 \times 9 \mathrm{~A}, 0 \times 9 \mathrm{~B}, 0 \times 5 \mathrm{~B}, 0 \times 99,0 \times 59,0 \times 58,0 \times 98,0 \times 88\), \(0 x 48,0 x 49,0 x 89,0 x 4 \mathrm{~B}, 0 \times 8 \mathrm{~B}, 0 \times 8 \mathrm{~A}, 0 x 4 \mathrm{~A}, 0 \times 4 \mathrm{E}, 0 \times 8 \mathrm{E}, 0 \times 8 \mathrm{~F}, 0 x 4 \mathrm{~F}, 0 \times 8 \mathrm{D}, 0 x 4 \mathrm{D}, 0 \times 4 \mathrm{C}, 0 x 8 \mathrm{C}\), \(0 \times 44,0 \times 84,0 \times 85,0 \times 45,0 \times 87,0 \times 47,0 \times 46,0 \times 86,0 \times 82,0 \times 42,0 \times 43,0 \times 83,0 \times 41,0 \times 81,0 \times 80\), \(0 \times 40\)
\};
```

