N10 / N10A METER OF NETWORK PARAMETERS

FEATURES:
- Measurement and conversion of power network parameters in 3 or 4-wire, balanced or unbalanced systems.
- Measurement and visualization of several scores of power network quantities and current and voltage harmonics (up to the 25 th).
- Indications taking into consideration programmed ratio values.
- Storage of minimal and maximal values.
- Backlit units of all quantities.
- Programmable number of pages and selection of displayed quantities on each of the 20 pages.
- Configurable analog outputs (N10-1, N10A-3) and alarm outputs (N10-3, N10A-1).
- Digital RS-485 output – MODBUS protocol.
- Impulse input to count the consumption of various medium (N10).
- Battery support of configuration data and counter state at supply decay.

EXAMPLE OF APPLICATION

FEATURES:
- Measurement and conversion of power network parameters in 3 or 4-wire, balanced or unbalanced systems.
- Measurement and visualization of several scores of power network quantities and current and voltage harmonics (up to the 25 th).
- Indications taking into consideration programmed ratio values.
- Storage of minimal and maximal values.
- Backlit units of all quantities.
- Programmable number of pages and selection of displayed quantities on each of the 20 pages.
- Configurable analog outputs (N10-1, N10A-3) and alarm outputs (N10-3, N10A-1).
- Digital RS-485 output – MODBUS protocol.
- Impulse input to count the consumption of various medium (N10).
- Battery support of configuration data and counter state at supply decay.

MEASUREMENT AND VISUALIZATION OF POWER NETWORK PARAMETERS

- phase voltages U_1, U_2, U_3
- phase-to-phase voltages U_{12}, U_{23}, U_{31}
- phase currents I_1, I_2, I_3
- phase active powers P_1, P_2, P_3
- phase reactive powers Q_1, Q_2, Q_3
- phase apparent powers S_1, S_2, S_3
- phase active power factors P_1, P_2, P_3
- phase reactive power factors P_1, P_2, P_3
- phase active power of active and apparent powers P_1, P_2, P_3

- frequency f
- mean phase voltage U_{av}
- mean phase-to-phase voltage U_{av}
- mean 3-phase current I_{av}
- mean active power e.g., 15 min. P_{15}
- 3-phase active, reactive and apparent energy E_{nP}, E_{nQ}, E_{nS}
- total harmonic distortion factors for phase voltages and phase currents THD_U, THD_Q, THD_S
- harmonics of phase voltages and currents – up to the 25 th

GALVANIC ISOLATION:

INPUTS:
- phase voltages U_1, U_2, U_3
- phase-to-phase voltages U_{12}, U_{23}, U_{31}
- phase currents I_1, I_2, I_3
- phase active powers P_1, P_2, P_3
- phase reactive powers Q_1, Q_2, Q_3
- phase apparent powers S_1, S_2, S_3
- phase active power factors P_1, P_2, P_3
- phase reactive power factors P_1, P_2, P_3

OUTPUTS:
- frequency f
- mean phase voltage U_{av}
- mean phase-to-phase voltage U_{av}
- mean 3-phase current I_{av}
- mean active power e.g., 15 min. P_{15}
- 3-phase active, reactive and apparent energy E_{nP}, E_{nQ}, E_{nS}
- total harmonic distortion factors for phase voltages and phase currents THD_U, THD_Q, THD_S
- harmonics of phase voltages and currents – up to the 25 th

MEASUREMENT PARAMETERS AND MEASURING RANGES

<table>
<thead>
<tr>
<th>Measured parameter</th>
<th>Indication range</th>
<th>Intrinsic error</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage U_1</td>
<td>100 V (Ku = 1)</td>
<td>± (0.2% m.v + 0.1% of range)</td>
<td>Ku = 1...4000</td>
</tr>
<tr>
<td></td>
<td>400 V (Ku = 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for Ku = 1...4000 kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current I_1</td>
<td>1.000 A (Ki = 1)</td>
<td>± (0.2% m.v + 0.1% of range)</td>
<td>Ki = 1...2000</td>
</tr>
<tr>
<td></td>
<td>5.000 A (Ki = 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for Ki = 1...20.00 kA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active power P</td>
<td>0.0...(-)1999.9 W (Wh) for Ku = 1, Ki = 1</td>
<td>± (0.5% m.v + 0.2% of range)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-)1999.9 MW (MWh)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean active power P</td>
<td>Active energy E_{nP}, E_{nP}</td>
<td>± (0.5% m.v + 0.2% of range)</td>
<td></td>
</tr>
<tr>
<td>Apparent power S</td>
<td>0.0...(-)1999.9 VA (VAr) for Ku = 1, Ki = 1</td>
<td>± (0.5% m.v + 0.2% of range)</td>
<td></td>
</tr>
<tr>
<td>Apparent energy E_nS, E_nS</td>
<td>0.0...1999.9 MVA (MVAr)</td>
<td>± (0.5% m.v + 0.2% of range)</td>
<td></td>
</tr>
<tr>
<td>Reactive power Q</td>
<td>0.0...(-)1999.9 VA (VAr) for Ku = 1, Ki = 1</td>
<td>± (0.5% m.v + 0.2% of range)</td>
<td></td>
</tr>
<tr>
<td>Reactive energy E_nQ, E_nQ</td>
<td>0.0...1999.9 MVAr (MVAr)</td>
<td>± (0.5% m.v + 0.2% of range)</td>
<td></td>
</tr>
<tr>
<td>Active power factor Pf_1</td>
<td>-1.00...0.00...1.000</td>
<td>± 1% m.v ± 2c</td>
<td>Pf = P/S (power factor)</td>
</tr>
<tr>
<td>Coefficient $tgfi$ (ratio of reactive power to active power)</td>
<td>-99.9...0...99.9</td>
<td>± 1% m.v ± 2c</td>
<td>error in the range -9.99...0...9.99</td>
</tr>
<tr>
<td>Frequency f</td>
<td>15.0...500.0 Hz</td>
<td>± 0.5% m.v</td>
<td></td>
</tr>
<tr>
<td>THD U, THD I</td>
<td>0.2...200%</td>
<td>± 5% m.v ± 2c</td>
<td>error in the range 10...120% U, I, 47.5...52 Hz</td>
</tr>
</tbody>
</table>

Where: Ku - ratio of voltage transformer, Ki - ratio of current transformer, m.v - measured value, c - the least significant display digit

INPUTS

- Input type
- Properties
- Reactive impulse input
 - 0/24 V d.c. ±50% (N10 type)
Outputs

- **Relay output**
 - 3 relays, voltageless NO contacts, load capacity 250 V a.c./0.5 A a.c. (N10 type)
 - 1 relay, voltageless NO contacts, load capacity 250 V a.c./0.5 A a.c. (N10A type)

- **Analog output**
 - 1 output: 0...20mA (4...20mA), programmable, accuracy 0.5% (N10 type)
 - 3 outputs: -5...5mA, programmable, accuracy 0.2% (N10A type)

- **Reactive impulse input**
 - 0...2 Hz, 12...50V d.c. (5...20mA) (N10 type)

Digital Interface

- **Type of interface**
 - Transmission protocol: MODBUS RTU and ASCII
 - Mode: 8N2, 8E1, 8O1, 7E1, 7O2
 - Baud rate: 0.3; 0.6; ..., 19.2; kbit/s

External Features

- **Readout field**
 - 4 x 5 LED digits
 - red or green color, 14 mm

- **Overall dimensions**
 - 144 x 144 x 77 mm
 - Panel cut-out: 138+0.5 x 138+0.5 mm

- **Weight**
 - 0.8 kg

- **Protection grade**
 - from frontal side: IP40
 - from terminal side: IP10

Rated Operating Conditions

- **Supply voltage**
 - 85...250 V a.c. (40...400 Hz) or d.c.
 - power input ≤ 12 VA

- **Power input**
 - in voltage circuit ≤ 0.5 VA
 - in current circuit ≤ 0.1 VA

- **Input signal**
 - 0...0.01...1.2 In; 0...0.01...1.2 Un
 - for current, voltage, frequency, power and energy:
 - 0.1...1.2 In; 0.1...1.2 Un; 47...52 Hz for THD U, THD I and harmonics
 - 0...0.02...1.2 In; 0...0.07...1.2 Un for power factors Pf, tge;
 - frequency 15...45...65...500 Hz
 - sinusoidal signal (THD ≤ 8%)

- **Power factor**
 - -1...0...1

- **Preheating time**
 - 5 min.

- **Temperature**
 - ambient 0...23...55°C

- **Humidity**
 - 25...95%

- **Operating positions**
 - any

- **External magnetic field**
 - 0...40...400 A/m

- **Short duration overload (5 s)**
 - voltage input: 2Un (max. 1000 V)
 - current input: 10 IN

- **Admissible peak factor**
 - voltage: 2
 - current intensity: 2

- **Additional error (in % of the intrinsic error)**
 - from frequency of input signals: <50%
 - from ambient temperature changes: <50%/10°C

Safety and Compatibility Requirements

- **Electromagnetic compatibility**
 - noise immunity: acc.to EN 61000-6-2
 - noise emissions: acc.to EN 61000-6-4

- **Isolation insured by the casing**
 - double

- **Isolation between circuits**
 - basic

- **Polution level**
 - 2

- **Installation category**
 - III

- **Maximal phase-to-earth voltage**
 - 600V

- **Altitude a.s.i.**
 - < 2000 m

Connection Diagram

- Indirect measurement in a four-wire network
- Semi-indirect measurement in a 4-wire network

Ordering

- **N10 / N10 A**
 - X X X X X XX X

<table>
<thead>
<tr>
<th>Input current IN:</th>
<th>X X X X X</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input phase voltage Un: 100 V</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Digital output:</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>without interface:</td>
<td>0</td>
</tr>
<tr>
<td>with RS-485 interface:</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display:</th>
<th>red</th>
<th>green</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supply voltage:</th>
<th>85...250 V d.c. or a.c., 40...400 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version:</td>
<td>standard</td>
</tr>
<tr>
<td>Acceptance tests:</td>
<td>without additional quality requirements</td>
</tr>
<tr>
<td>acc.to customer’s request*</td>
<td>8</td>
</tr>
</tbody>
</table>

*Order example: The code: N10 - 2 1 1 2 0 00 7 means:
 1. N10 - network parameter of N10 type
 2. Input range: 1.5 A
 3. Input voltage: 1000 V
 4. Current input: 10 IN
 5. Power factor: 0.1...0.8...1 VA
 6. Noise immunity: acc.to EN 61000-6-2
 7. Noise emissions: acc.to EN 61000-6-4

PD10 - Interface converter

ND1 - Analyser

For more information about LUMEL’S products please visit our website: www.lumel.com.pl