| VERA                                   |                                   |            |            | _ D ×      |
|----------------------------------------|-----------------------------------|------------|------------|------------|
| me ports pevices measure bigtabas      | e Options Belp                    |            |            |            |
| <u>- 16 10 0 1 13</u>                  | DB Ea                             |            |            |            |
| Vertesz IFM P01 transducer_1 ModBus te | ster Vertesz TITxxP/D transducer_ | 13         |            |            |
| Hardware Info                          | Measure Data                      |            |            |            |
| Hardware                               | CHO (kWh)                         | CH1 [N]    | CH2 [N]    |            |
| Vertesz IFM v1.00                      | 0                                 | 0          | 0          |            |
| Serial number                          |                                   |            |            |            |
| Cathurne unuing                        | CU2 (N)                           | CUA INI    | CUE INIT   |            |
|                                        |                                   |            |            |            |
| ,                                      | 0                                 | 0          | 0          |            |
|                                        |                                   |            |            |            |
|                                        | CHO (kW)                          | CH1 (N/s)  | CH2 (N/s)  |            |
|                                        | 0                                 | 0          | 0          |            |
|                                        |                                   | CHA IN (A) | CHE IN (A) |            |
|                                        |                                   |            |            |            |
|                                        |                                   | lo.        |            |            |
|                                        |                                   |            |            |            |
|                                        | Tariff input state:               |            |            |            |
|                                        |                                   |            |            |            |
| Settings                               |                                   |            |            |            |
| - Davias Clask                         | Deserve                           |            |            |            |
| Device Cluck                           | Record count                      | State      |            |            |
| 2006.09.04 15:45:45                    | 0/0                               |            |            | AutoBead   |
|                                        |                                   |            |            | Clear All  |
| Saturary 1                             |                                   |            |            | Based all  |
| - Section                              |                                   |            |            | Deadland I |
| Autoset                                |                                   |            |            |            |
| Device Address                         | Connection                        | 0          |            |            |
|                                        |                                   | Stop       |            |            |
|                                        |                                   |            |            |            |
|                                        |                                   |            |            |            |

# Программа VERA 2 Руководство для пользователя

(Версия без базы данных)

10/-

# <u>Содержание</u>

2

## 1 Общая информация

Программа VERA служит для настройки, отображения и сохранения в файле измеренных текущих и записанных в памяти величин интеллектуальных преобразователей фирмы Vertesz Elektronika. Связь С устройствами осуществляется посдедством канала последовательной связи RS485 с помощью протокола TCP/IP. Число считываемых устройств теоратически не подключаемых ограничено. Конечно, число датчиков, К программе, ограничивается шириной полосы линии связи и мощностью персонального компьютера, на которой производится прогон программы.

В настоящем документе даётся описание программы версии без базы данных.

### 1.1 Прогон программы на заднем фоне

При выборе пункта меню File/Exit, или при нажатии кнопки инструментальной панели, прогон программы немедленно останавливается. Однако, под влиянием обычной кнопки программы появляется окно диалога:

| Close application<br>Close action | ×         |
|-----------------------------------|-----------|
| C Close application               |           |
| Close window                      |           |
|                                   | Cancel OK |

Рис. 1: Закрытие Программы/Окна

Здесь можно выбрать закрытие либо программы, либо только её главного окна. В этом последнем случае исчезает не только главное окно программы, но и кнопка для его управления с панели запуска. Лишь небольшое лого Vertesz Elektronika между иконками на правой стороне панели запуска указывает на прогон программы (рис. 2).



Рис. 2: Программа в состоянии иконки

Если при этом щёлкнуть на иконку правой кнопкой мыши, то появляется всплывающее меню, с помощью которого можно раскрыть главное окно программы или можно закрыть программу. Если щёлкнуть два раза на иконку, то раскрывается главное окно программы.

# 2 Порты

### 2.1 Структура сети датчиков

Программой VERA можно считывать элементы сети датчиков, построенных по топологии, изображённой на рис. 3. Как видно на рисунке, каждый из датчиков подключается к линии RS485 параллельно. Идентификация датчиков, подключённых к едиственной линии, производится адресом ModBus датчиков. Поэтому датчики, расположенные на общей линии RS485, должны иметь индивидуальные адреса внутри линии.

Линия RS485 может быть подключён к компьютеру двояко. Одна ИЗ возможностей преобразователь RS232/485. подключённый это К последовательному порту компьютера. (Возможно также использование USB/RS485. Такие преобразователи преобразователя считывааются программой таким же последовательным портом, как свои собственные порты **RS232** возможность компьютером). Вторая это использование преобразователей, подключённых к LAN-у. Применяемый преобразователь должен иметь TCP/IP stack, и между TCP stack и линией RS485 работает транспарентным передатчиком.



Рис. 3: Структура сети датчиков

### 2.2 Логические порты

Адреса устройств, подключённых к разным линиям RS485, могут совпадать. Поэтому программа должна различать также отдельные линии RS485. Идентификация производится логическими портами, определяемыми в программе. Согласно рисунку выше, можно определить логические порты двух типов. Один из них – это логический порт типа RS232, являющийся



последовательным портом компьютера. (COMx). Другой – это порт типа TCP/IP, являющийся преобразователем TCPIP/RS485, подключаемым к LAN-у, имеющий на LAN-е самостоятельный адрес IP.

Определение портов возможно выбором пункта меню *Ports/Port List...* программы. В этом случае раскрывается окно диалога, изображённая на рис. 4, содержащее список портов, определённых в программе. При первом запуске программы список - пустой.

| P | ort list          |         |        | 2                                                                     | × |
|---|-------------------|---------|--------|-----------------------------------------------------------------------|---|
|   | Туре              | Name    | State  | Settings                                                              | - |
|   | RS232 Serial port | соме    | Closed | Auto open/close ON, timeout: 30000; Reply timeout: 250; COM6 9600 8   |   |
|   | TCP/IP port       | TCPIP 1 | Closed | Auto open/close ON, timeout: 30000; Reply timeout: 1000; Host: 138.59 |   |
|   |                   |         |        |                                                                       |   |
|   |                   |         |        |                                                                       |   |
|   |                   |         |        |                                                                       |   |
|   |                   |         |        |                                                                       |   |
|   |                   |         |        |                                                                       |   |
|   |                   |         |        |                                                                       | ł |
|   | New               | Delete  | Open   | Close Settings OK                                                     |   |

Рис. 4: Список определённых портов.

Назначение кнопок, имеющихся в окне диалога, см. в следующей таблице:

| Кнопка   | Объяснение                          |
|----------|-------------------------------------|
| New      | Создание нового порта               |
| Delete   | Удаление порта, выбранного из листа |
| Open     | Открытие связи на выбранном порту.  |
| Close    | Закрытие связи на выбранном порту   |
| Settings | Изменение настроек выбранного порта |
| OK       | Закрытие окна                       |

#### Таблица I: Кнопки в окне диалога списка портов

Если в окне диалога *Cnucka портов* щёлкнуть на кнопку *New*, то раскрывается окно диалога *Create New Port* (рис. 5). Здесь в графу редакции рядом с ярлыком *Name* нужно записать индивидуальный идентификатор, служащий для идентификиации программой линии RS485. Затем из графы, выпадающей рядом с ярлыком *Туре*, нужно выбрать тип порта. Если щёлкнуть на кнопку *Apply*, то порт создаётся, а ярлык окна диалога меняется на *Modify Port Settings* (рис. 5). Теперь можно произвести индивидуальные настройки порта.

vertesz@vertesz.hu

www.vertesz.hu



| Port                |              |     | Port           |                   |         |        |
|---------------------|--------------|-----|----------------|-------------------|---------|--------|
| Name: Soros Port 2  |              |     | Name:          | Soros Port 2      |         |        |
| Type: RS232 Seria   | al port      | •   | Type:          | RS232 Serial port |         |        |
| Connection handling |              |     | Connection ha  | andling           |         |        |
| Auto open/close:    |              |     | Auto open/o    | close:            | V       |        |
| Close timeout [ms]: |              |     | Close timeou   | ıt [ms]:          | 30000   |        |
| Reply timeout [ms]: |              |     | Reply timeou   | ut (ms):          | 1000    |        |
| ine settings:       |              |     | Line settings: |                   |         |        |
|                     |              |     | COM1 9600      | ) 8N1             |         |        |
|                     |              | Set |                |                   |         | Set    |
|                     | Applu Cancel |     | L              |                   | Apolu 1 | Cancel |

Рис. 5.: Создание нового порта

В окне сообщений *Connection handling* можно производить настройки, не зависимые от типа порта. Здесь можно определить свойства, перечисленные в следующей таблице.

| Таблица II. | Настройки | Connection | handling |
|-------------|-----------|------------|----------|
|-------------|-----------|------------|----------|

| Настройка       | Объяснение                                                                                                                                                                                                                                                                                                                                                             |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Auto open/close | <ul> <li>Если не отмечен, то порт в каждом случае до использования нужно открыть кнопкой, находящейся в окне диалога <i>Open</i>, а после использования закрыть кнопкой <i>Close</i>.</li> <li>Если отмечен, то порт при первом использовании открывается программой, а после последнего использования, по истечении <i>Close Timeout</i>, рассматримаемого</li> </ul> |
|                 | в следующем пункте, закрывается.                                                                                                                                                                                                                                                                                                                                       |
| Close timeout   | Истолковано только если Auto open/close отмечен. Служит для определения времени в тысячных долях секунды, истекаемому после последнего использования для того, чтобы порт был закрыт программой автоматически. (Предлагается сохранение настройки default 30000)                                                                                                       |
| Reply timeout   | Время ожидания программой на данном порту ответа устройства, выраженное в тысячных долях секунды. При последовательном порту предлагается 250-500ms, При использовании порта TCP/IP, в зависимости от нагруженности LAN, предлагается настройка 1000 -10000.                                                                                                           |

В окне сообщений *Line settings* указаны настройки порта, зависимые от его типа. Эти настройки производятся в окне диалога, раскрывающемся при щёлчке на кнопку *Set* (рис. 6).

| Serial Port settings         | ×               |                                                   |
|------------------------------|-----------------|---------------------------------------------------|
| Serial port                  | Parity<br>Even  | TCP/IP port settings                              |
| Baudrate<br>9600             | Stopbits        | Host<br>138:59:159:102<br>Port<br>9000            |
| Databits 8 Serial pot closed | Flow control    | Local settings<br>Timout on connect [ms]<br>[5000 |
|                              | Apply Cancel OK | Cancel DK                                         |

Рис. 6: Настройки портов в зависимости от типа

В случае последовательного порта нужно выбрать физический последовательный порт (COMx) и следующие настройки:

- Baudrate: 9600
- Databits: 8
- Parity: Even
- Stopbits: 1
- Flow control: None

В случае порта TCP/IP нужно задать адрес IP преобразователя TCP/RS485, номер порта TCP и для создания связи – значение *timeout* в тысячных долях секунды.

# 3 Считывание устройств

Нужно задать для программы тип считываемого устройства. Это производится в окне диалога *Device List*, раскрывающемся при выборе пункта программы *Devices/Device list*.... В этом окне указан список считываемых устройств, являющийся пустым при первом запуске программы.

| evice List                 |                              | 2 |
|----------------------------|------------------------------|---|
| Devices                    | 1                            |   |
| Device type                | Device ID                    |   |
| Vertesz IFM P01 transducer | Vertesz IFM P01 transducer_1 |   |
| ModBus tester              | ModBus tester                |   |
|                            |                              |   |
|                            |                              |   |
|                            |                              |   |
|                            |                              |   |
|                            |                              |   |
|                            |                              |   |
|                            |                              |   |
|                            |                              |   |
|                            |                              |   |
|                            | New Delete                   |   |
|                            |                              | _ |
|                            | ОК                           |   |
|                            |                              | - |

Рис. 7: Окно диалога Device List

Назначение кнопок в окне диалога указано в таблице ниже:

| Таблица III: Кнопки в окне диалога Списон | устройств | (Device List) |
|-------------------------------------------|-----------|---------------|
|-------------------------------------------|-----------|---------------|

| Кнопка | Объяснение                              |
|--------|-----------------------------------------|
| New    | Добавление нового устройства к листу    |
| Delete | Удаление устройства, выбранного с листа |
| OK     | Закрытие окна                           |

Если щёлкнуть на кнопку *New*, то раскрывается окно диалога *Create New Device* (рис. 8).

| reate new device             |    |       |    |
|------------------------------|----|-------|----|
| lew device data              |    |       |    |
| Device type                  |    |       |    |
| Vertesz IFM P01 transducer   |    |       | -  |
| Device name                  |    |       |    |
| Vertesz IFM P01 transducer_1 | 2  |       |    |
|                              |    |       |    |
|                              |    |       |    |
|                              |    |       |    |
|                              | Ca | ancel | OK |

Рис. 8: Окно диалога Create New Device

В окне диалога из меню, выпадающего под ярлыком *Device Type*, нужно выбрать тип устройства, добавляемого к списку. В графе редакции под ярлыком *Device name* нужно задать устройству индивидуальный для программы идентификатор. При щёлчке на кнопку *OK* устройство добавляется к списку устройств. К главному окну программы добавляется новая страница, содержащая элементы управления, необходимые к настройкам устройства и отображению величин измерения. К каждому устройству относится по одной странице, а листать между страницами можно ушками, изображёнными на рис. 9.



| 🔁 VERA                                     |                                       |
|--------------------------------------------|---------------------------------------|
| <u>File Ports Devices Measure Database</u> | e Options <u>H</u> elp                |
| 😐 🏭 🛍 🚳 💷 🔝                                |                                       |
| Vertesz IFM P01 transducer_1 ModBus tes    | ster   Vertesz TITxxP/D transducer_13 |
| Hardware Info                              | Measure Data                          |
| Hardware                                   | CHO [N] CH1                           |
| Vertesz IFM v2.00                          |                                       |
| Due O Deperer                              |                                       |

Рис. 9.: Переход между страницами

Назначение элементов управления, указанных на отдельных страницах, рассматривается в подразделах ниже.

### 3.1 Настройки, не зависимые от типа устройств

Независимо от типа устройств на каждой странице внизу расположено окно сообщений *Device Address* и *Connection* (рис. 10). Здесь производятся настройки коммуникации устройств. В окне сообщений *Device Address* под ярлыком *Port* можно найти выпадающее меню, содержащее иденфикиторы ранее созданных логических портов (см. главу 4). Нужно выбрать порт, к которому подключается устройство. В графе под ярлыком *Address* нужно задать адрес ModBus устройства.

| AutoSet                   |                                | Head new |
|---------------------------|--------------------------------|----------|
| Port Address<br>COM6 I 41 | Connection State Start Stop OK |          |
|                           |                                | li.      |

Рис. 10: Настройки коммуникации устройств

Щёлчком на кнопку *Start* окна сообщений *Connection* можно создать связь с устройством. Кнопкой же *Stop* останавливается опрос устройства. Актуальное состояние связи можно найти под ярлыком *State*.

Внимание! Если при настройках выбранного порта *Auto open/close* не выбрано, то порт нужно открыть, прежде чем щёлкнуть на кнопку Start (см. главу 4).

www.vertesz.hu

vertesz@vertesz.hu

## 3.2 Датчик IFM P01

Вид страницы датчика IFM P01 изображен на рисунке 11. Страница разделена на четыре окна сообщений. Описание работы элементов управления, перечисленных в этих окнах сообщений, даётся в следующих пунктах.

| VERA                                                        |                                |                |                | <u> </u>  |
|-------------------------------------------------------------|--------------------------------|----------------|----------------|-----------|
| <u>File Ports D</u> evices <u>M</u> easure D <u>a</u> tabas | e <u>O</u> ptions <u>H</u> elp |                |                |           |
| 😐 🏗 🛍 🛈 🕶 🔝                                                 |                                |                |                |           |
| Vertesz IFM P01 transducer_1 ModBus te                      | ester                          |                |                |           |
| Hardware Info                                               | Measure Data                   |                |                |           |
| Hardware                                                    | CHO (kWh)                      | CH1 [N]        | CH2 [N]        |           |
| Vertesz IFM v1.00                                           | 0                              | 0              | 0              |           |
| Serial number                                               |                                |                |                |           |
| Software version                                            | CH3 INI                        | CH4 IN1        | CH5 INI        |           |
| 0.86.0                                                      |                                |                |                |           |
| ,                                                           |                                | U              | U              |           |
|                                                             |                                |                |                |           |
|                                                             | CHO [kW]                       | CH1 [N/s]      | CH2 [N/s]      |           |
|                                                             | 0                              | 0              | 0              |           |
|                                                             | CH3 (N/s)                      | ,<br>CH4 [N/s] | ,<br>CH5 (N/s) |           |
|                                                             | 0                              | 0              | 0              |           |
|                                                             | 1                              | 1-             | 1.             |           |
|                                                             | Tariff input state:            |                |                |           |
|                                                             | rann input state.              |                |                |           |
|                                                             |                                |                |                |           |
| Settings                                                    |                                |                |                |           |
| Device Clock                                                | Records                        |                |                |           |
|                                                             | Record count                   | State          |                |           |
| 2006.09.04 15:47:29                                         | J0/0                           |                |                | AutoRead  |
|                                                             |                                |                |                | Clear All |
| Set now                                                     |                                |                |                | Read all  |
| AutoSet                                                     |                                |                |                | Read new  |
|                                                             |                                |                |                |           |
| Port A                                                      | ddress                         | State          |                |           |
| СОМ6 🔽 4                                                    | 1 Start                        | Stop OK        |                |           |
|                                                             |                                |                |                |           |
|                                                             |                                |                |                |           |

Рис. 11: Страница к устройствам IFM

## 3.2.1 Данные устройства

В окне сообщений *Hardware Info* в левом верхнем углу можно читать информационные данные, считанные из устройства. Кнопкой *Settings…* в правом нижнем углу окна сообщений раскрывается окно диалога, служащее для настройки каналов. (рис. 11). Переход между страницами отдельных каналов осуществляется ушками, расположенными на верхней части окна.



| Channel Settings    | ×                  |
|---------------------|--------------------|
| СНО СН1 СН2 СН3 СН4 | CH5                |
| Channel             |                    |
| Description:        |                    |
|                     |                    |
|                     |                    |
| Impulse Value SI    | Unit               |
| 10,1                | (wnj               |
| Integration Time Di | ifferetial SI Unit |
| 3600 💌 [k           | w]                 |
|                     |                    |
|                     |                    |
|                     |                    |
|                     |                    |
|                     | Cancel OK          |

Рис. 12: Настройка каналов IFM

Меню, выпадающее под ярлыком *Description* имеет значение лишь в версии программы с базой данных.

В графу редакции *Impulse Value* нужно записать импульсный эквивалент, а в графу *SI Unit* – единицу измерения величины, соответствующей импульсам. Из числа импульсов, подсчитанных между двумя считываниями, программой рассчитывается и изображается также дифференциальная величина. (Напр. если импульсы означают электроэнергию, то рассчитывается мощность, или если импульсы означают количество вещества, то рассчитывается скорость перетока.). Поэтому можно задать единицу измерения дифференциальной величины и *время интеграции*. *Время интеграции* объясняется следующим образом: Расчёт дифференциальной величины производится программой следующим образом:

$$D = \frac{\Delta N \cdot I}{\frac{\Delta t}{T_{INT}}} = \frac{\Delta V}{\Delta t} T_{INT}$$
(1)

где *D* - дифференциальная величина,  $\Delta N$  – число импульсов между двумя последними считываниями, *I* – импульсный эквивалент. Таким образом, значение, соответствующее импульсам между двумя считываниями:  $\Delta V = \Delta N \cdot I$ .  $\Delta t$  – время между двумя считываниями в секундах, а  $T_{INT}$  – заданное время интегрирования.

Задать *T*<sub>INT</sub> нужно потому, что время ∆*t* в расчёте подставлено программой в секундах. Часто бывает однако такой случай, когда базой времени рассчитанного импульсами значения является не 1sec (напр. kWh), или базой времени дифференциальной величины является не 1sec (напр. литр/мин). В таких случаях нужно изменить масштаб. Это производится значением *T*<sub>INT</sub>. Примеры и объяснения см. в следующей таблице.

11



#### Таблица IV: Значение времени интегрирования для различных случаев

| Импульсный<br>эквивалент и<br>единица его<br>измерения | Дифференциальная<br>величина и единица<br>её измерения | Время<br>интегрирования<br>( <i>T<sub>INT</sub></i> ) | Объяснение                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>E</i> [Ws]                                          | P [W]                                                  | 1                                                     | В этом случае <i>P</i> – потребленная энергия за секунду,<br><i>E</i> - средняя мощность за секунду. Изменения единицы<br>измерения не нужно:<br><i>P</i> [W]= ∆ <i>E</i> [Ws]/∆ <i>t</i> [s]<br>Так <i>T</i> <sub>INT</sub> =1                                                                                                                             |
| <i>E</i> [Wh]                                          | P [W]                                                  | 3600                                                  | В этом случае <i>P</i> – потребленная энергия за секунду, но<br><i>E</i> - средняя мощность за час. $\Delta t$ нужно перевести в часы:<br><i>P</i> [W]= $\Delta E$ [Wh]/ $\Delta t$ [h]<br>$\Delta t$ [h]= $\Delta t$ [s]/3600<br><i>P</i> [W]= $\Delta E$ [Wh]/( $\Delta t$ [s]/3600)=( $\Delta E$ [Wh] / $\Delta t$ [sec]) ·3600<br>Так : $T_{INT}$ =3600 |
| <i>m</i> [kg]                                          | <i>m/t</i> [kg/min]                                    | 60                                                    | В этом случае $m/t$ – протекающее за минуту количество<br>веществаа, поэтому $\Delta t$ нужно перевести в минуты.<br>$m/t$ [kg/min]= $m$ [kg]/ $\Delta t$ [min]<br>$\Delta t$ [min]= $\Delta t$ [s]/60<br>$m/t$ [kg/min]= $m$ [kg]/( $\Delta t$ [s]/60)=( $m$ [kg]/ $\Delta t$ [s]) ·60<br>Так: $T_{INT}$ =60                                               |

### 3.2.2 Часы устройства

В окне сообщений *Device Clock* показано время часов устройства. Если щёлкнуть на кнопку *Set Now*, то часы устройства синхронизируются программой к часам компьютера. В диалоге, раскрывающемся при щёлчке на кнопку *Auto Set* (рис. 13), можно задать программе время синхронизации часов устройства ежедневно. (если запуск программы производится после заданного момента времени, то часы устройства синхронизируются немедленно после первого подключения).

| Autoset device clock<br>Settings | ×  |
|----------------------------------|----|
| Enable autoset every d           | ay |
| Autoset time                     |    |
| 10:30:30                         | •  |
|                                  |    |
|                                  | OK |

Рис. 13: Автоматическая синхронизация часов устройства

### 3.2.3 Отображение результатов измерения

В окне сообщений *Measure Data* показаны величины, вычисленные из заданных импульсных эквивалентов, дифференциальные величины, и актуальное состояние тарифного входа. (смотри ещё пункт 3.2.1). Последнее показано цветом графы под ярлыком *Tariff input state*:

- Красный: логическая "1"
- Чёрный: логический "0"

### 3.2.4 Считывание архивной памяти, записанной устройством

В окне сообщений *Records* под ярлыком *Record Count* показано число (несчитанных/всех) массивов, сохранённых в устройстве.



Внимание! Устройством не ведётся учёт о том, какой из массивов считано из архивной памяти. Это производится программой VERA. Поэтому, программами VERA, прогнанными на двух разных компьютерах, может быть показаны разные значения в случае несчитанных массивов.

Массивы, считанные из устройства, записываются в форматтированный текстовый файл:

| 2006.07.14 | 7:15:00 | : | 186.7 | 325.0 | 0.0 | 0.0 | 0.0 | 0.0                |
|------------|---------|---|-------|-------|-----|-----|-----|--------------------|
| 2006.07.14 | 7:30:00 | : | 187.5 | 331.0 | 0.0 | 0.0 | 0.0 | 0.0                |
| 2006.07.14 | 7:45:00 | : | 187.1 | 380.0 | 0.0 | 0.0 | 0.0 | 0.0                |
| 2006.07.14 | 8:00:00 | : | 186.3 | 437.0 | 0.0 | 0.0 | 0.0 | 0.0   Tariff signa |
| 2006.07.14 | 8:15:00 | : | 187.4 | 466.0 | 0.0 | 0.0 | 0.0 | 0.0   Tariff signa |
| 2006.07.14 | 8:30:00 | : | 181.4 | 415.0 | 0.0 | 0.0 | 0.0 | 0.0   Tariff signa |
| 2006.07.14 | 8:45:00 | : | 158.7 | 312.0 | 0.0 | 0.0 | 0.0 | 0.0   Tariff signa |
| 2006.07.14 | 9:00:00 | : | 135.3 | 328.0 | 0.0 | 0.0 | 0.0 | 0.0   Tariff signa |
| 2006.07.14 | 9:15:00 | : | 178.1 | 346.0 | 0.0 | 0.0 | 0.0 | 0.0   Tariff signa |
|            |         |   |       |       |     |     |     |                    |

В каждой строчке показаны данные того или иного массива. В начале строчки показана отметка времени массива. Затем — значения шести счётчиков, умноженные на заданные импульсные эквиваленты (смотри: в пункте 3.2.1), а в конце строчки можно видеть информацию, закодированную битами статуса массива.

Внимание! Отметка времени массивов не содержит информацию год. Поэтому при считывании программой VERA всегда предполагается, что данный рекорд был создан не раньше, чем год тому назад. Так, например, в апреле 2006 массивы марта считаются за 2006-ой год, но массивы ноября – за 2005.

Щёлчком на кнопку *Read All* можно считывать все массивы, сохранённые в устройстве. В раскрывающемся диалоге нужно задать целевой файл. Выбранный файл - если он не пустой - полностью заменяет его.

Кнопкой *Read New* считываются массивы, не считанные по данным актуально прогоняемого экземпляра программы. В раскрывающемся диалоге нужно задать целевой файл и нужно выбрать, заменить ли его или продолжать, если он не пустой.

В диалоге, раскрывающемся кнопкой *Auto Read*, можно установить, чтобы программой считались вновь созданные массивы. При этом программа непрерывно наблюдает за устройством и при обнаружении нового массива, записывает его в заданный файл. (Заданный файл не заменяется, а продолжается).

Кнопкой Clear All удаляются все массивы, сохранённые в устройстве.

## 3.3 TMTG-3f távadó

К датчику TMTG-3f можно заказать две страницы устройства. Одна из них - это датчик – *T<u>ransducer</u>*, страница которого показана на рисунке 14. Вторая – это анализатор формы волны – <u>Wawe analizer</u>, описание которого см. в главе 3.3.2.

### *3.3.1* Датчик - Transducer TMTG-3f

Страница датчика подразделена на четыре окна сообщений.



Описание работы элементов управления, имеющихся в этих окнах сообщений, даётся в следующих пунктах.

| VERA                                    |                                       |                                   |                                   |                   |
|-----------------------------------------|---------------------------------------|-----------------------------------|-----------------------------------|-------------------|
| File Ports Devices Measure Options      | Help                                  |                                   |                                   |                   |
| 🚥 🎁 🛍 🚳 🚭 🔝                             |                                       |                                   |                                   |                   |
| Vertesz TMTG 1F transducer_1 Vertesz T  | MTG 3F Wave analizer_2 Vertesz TMTG 3 | 3F transducer_0 Vertesz TIT x     | xP/D transducer_4   Vertesz TITx: | xP/D transducer_3 |
| Hardware Info                           | Measure Data                          |                                   |                                   |                   |
| Hardware                                | Base Values   Voltage   Current   Pow | ver   Energy   Counters   Digital | inputs                            |                   |
| Vertesz TMTG 3F v0.90                   | Ur [V] U                              | Js [V]                            | Ut [V]                            |                   |
| Device configuration                    | 228 6                                 | 228 7                             | 228 6                             |                   |
| 230.94V, 1A/5A, LCD                     | 220,0                                 | 220,1                             | 220,0                             |                   |
| Main Software version                   | Ir [A]                                | s [A]                             | It [A]                            |                   |
| J0.91                                   | 4,138                                 | 4,140                             | 4,137                             |                   |
| IU processor software version           | Ptot [W]                              | tot IVAR1                         |                                   |                   |
| [0.8]                                   |                                       | 0.0201-                           |                                   |                   |
|                                         | 2,039K                                | 0,030K                            |                                   |                   |
| 1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Stot [VA] P                           | PFtot [W/VA]                      |                                   |                   |
|                                         | 2.839k                                | 1.000                             |                                   |                   |
|                                         |                                       |                                   |                                   |                   |
| Dev. mt                                 |                                       |                                   |                                   |                   |
| Calibration                             |                                       |                                   |                                   |                   |
| Params                                  |                                       |                                   |                                   |                   |
| Reset                                   | State                                 |                                   |                                   |                   |
| Bootloader                              | Sync src: Ur                          |                                   |                                   |                   |
| Device Clock                            | Records                               |                                   |                                   |                   |
|                                         | Measure Records Voltage Events        |                                   |                                   |                   |
| 2009.03.04 16:29:50                     | Becord count (Upread / Total) 9       | State                             |                                   | 1                 |
| ☐ Daylight save +1h                     | 2239 / 2239                           | naie                              | -                                 |                   |
| Set now                                 | , , , , , , , , , , , , , , , , , , , |                                   |                                   | Desdall Desdam    |
| AutoSet                                 |                                       |                                   |                                   |                   |
| Device Address                          | Connection                            |                                   |                                   |                   |
| Port Ac                                 | Idress                                | State                             |                                   |                   |
| bőrönd 💌 10                             | 6 🛨 Start                             | Stop DK                           |                                   |                   |
|                                         |                                       |                                   |                                   |                   |
| A Start Start                           | P VED A                               | Defeiserett öreretet              | Whiten an Ealbactable             |                   |

Рис. 14: Страница устройства ТМТG-3f

### 3.3.1.1 Данные устройства, запрограммирование устройства

В окне сообщений <u>Hardware Info</u> в левом верхнем углу левого верхнего окна сообщений можно видеть информационные данные, считанные из устройства: аппаратная версия и версия программы устройства, а также его заводской номер.

Кнопкой *Params.*. в правом нижнем углу этого же самого окна сообщений открывается диалог, служащий для настройки устройства (параметризации функций) (рис. 15).

Переход между страницами отдельных функций осуществляется ушками, расположенными на верхней части окна или между инструментами параметризации можно передвигаться вперёд-назад с помощью стрелок « », расположенных на нижней части окна сообщений. Кнопкой <u>Save</u> сохраняются значения параметров. При сохранении автоматически предлагается заводской номер в качестве названия файла.



Параметры других, уже сохранённых устройств TMTG-3f выбираются и переписываются в это устройство с помощью <u>Load.</u> Кнопкой *OK* можно сохранить значения, установленные к данной функции, кроме значения скорости – <u>Baudrate</u>, заданной под ушком <u>Communication</u> – Коммуникация; для его модификации необходим повторный запуск устройства.

| 🛃 VERA                        |                                                                |                         | <b>_ d X</b>       |
|-------------------------------|----------------------------------------------------------------|-------------------------|--------------------|
| File Ports Devices Measure    | Database Options Help                                          |                         |                    |
| 😐 🏭 🛍 🚇                       |                                                                |                         |                    |
| Vertesz TMTG 3F transducer_3  | Device Params                                                  | <u> </u>                |                    |
| Hardware Info                 | Communication Digital Inputs Impulse Inputs Synchron signal ar | nd RTC Measure Limiters | -                  |
| Hardware                      | Digital Uutputs Analog Uutputs Maximum Guards                  |                         |                    |
| Vertesz TMTG 3F v0.90         | Register Uptions                                               |                         |                    |
| Device configuration          | ✓ L to N voltages                                              |                         |                    |
| 230.94V, 25A, LCD             |                                                                |                         |                    |
| Main Software version         | Voltage symmetrical components Voltage THD                     |                         |                    |
| 0.90                          |                                                                |                         |                    |
| 10 processor software version |                                                                |                         |                    |
| IO PROC. ERROR                | Current symmetrical components                                 |                         |                    |
| Serial number                 | Current CE                                                     |                         |                    |
| 1401303                       |                                                                |                         |                    |
|                               | ✓ Total active power                                           |                         |                    |
|                               |                                                                |                         |                    |
|                               | Total reactive power Phase reactive power                      |                         |                    |
|                               | Total virtual power                                            |                         |                    |
| De                            |                                                                |                         |                    |
| Cali                          | Total power factor Phase power factor                          |                         |                    |
| Pa                            |                                                                |                         |                    |
|                               | Register min/max values                                        |                         |                    |
| Device Clock                  | V Periodic energie                                             |                         |                    |
| 2008.01.23 14:34:12           |                                                                |                         | 1                  |
| Davlight save +1h             | 🥅 Total energie                                                |                         | toRead   Clear All |
| S                             |                                                                |                         | ead all Bead new   |
| Au                            |                                                                |                         |                    |
| Device Address                |                                                                | 1 I I                   |                    |
| Port                          | Load Save <<                                                   | >> Cancel OK            |                    |
| vera                          | 16     16     Start Stop Wait for answer                       |                         |                    |
|                               |                                                                |                         |                    |
|                               |                                                                |                         |                    |
| 🏄 Start 🛛 👸 VER               | VERA2_Felhasznaloi 📴 Dokumentum1 - Micro                       |                         | HU 🔇 💐 🧊 📕 14:32   |

Рис. 15: Поверхность параметризации устройства

### С помощью <u>Device Params</u> - параметризации инструментов устанавливается требуемое значение следующих функций:

### • Связь - <u>Communication</u>

Задаётся ModBus адрес устройства и скорость передачи – <u>ModBus address</u>, <u>Baudrate</u>. Базовые значения, заданные на заводе при выпуске: адрес 16 и скорость 9600 bps.



| Device Params          |                |                |                         |             |          |
|------------------------|----------------|----------------|-------------------------|-------------|----------|
| Digital Outputs        | Ana            | log Outputs    | Maximum Guards          | Registratum | Options  |
| Communication          | Digital Inputs | Impulse Inputs | Synchron signal and RTC | Measure     | Limiters |
| Communication Settings |                |                |                         |             |          |
|                        |                |                |                         |             |          |
| ModBus Address         |                |                |                         |             |          |
| 16                     | Ī              |                |                         |             |          |
|                        |                |                |                         |             |          |
| Baudrate               |                |                |                         |             |          |
| box 9600               | -              |                |                         |             |          |
| 1003 3000              |                |                |                         |             |          |
|                        |                |                |                         |             |          |
|                        |                |                |                         |             |          |
|                        |                |                |                         |             |          |
|                        |                |                |                         |             |          |
|                        |                |                |                         |             |          |
|                        |                |                |                         |             |          |
|                        |                |                |                         |             |          |

### • Дискретные входы – <u>Digital Inputs</u>

Непосредственно на входе установлены фильтры дребезга, которые отфильтровывают переходные процессы внешних механических элементов. Эти фильтры периодом в 1 мсек опрашивают цифровые входы. Уровень считается стабильным, когда одно и тоже значение измеренной величины получено за последние *N* выборок. Значение <u>N</u> задаётся здесь для каждого входа отдельно – <u>Filter Length (N)</u>

Блоком дискретной выборки производится опрос выходов фильтров дребезга опроса периодичностью. Результат задаваемой каждого С канала записывается в свой 16 битный регистр сдвига, содержание которых можно через канал RS485. Время периода выбирается считывать в раскрывающемся окне Sampling Period в окне сообщений Digital sampler

| _      |
|--------|
|        |
|        |
| niters |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |

### • Импульсные входы – *Impulse Inputs*

Выходы фильтров дребезга с периодом в 1 мс опрашиваются фильтром импульсов, которые при каждом переходе *1*→*0* выдают логический импульс, если до этого уровень 1 продолжался не менее определённого минимального и не более определённого максимального времени.



| Device Params                  |       |                    |                |                               |             | E         |
|--------------------------------|-------|--------------------|----------------|-------------------------------|-------------|-----------|
| Digital Outputs                | 1     | Ana                | og Outputs     | Maximum Guards                | Registratun | n Options |
| Communication                  | Digit | al Inputs          | Impulse Inputs | Synchron signal and RTC       | Measure     | Limiters  |
| Impulse Filters                |       |                    |                |                               |             |           |
| Impulse Filter 0 Tmin<br>10 ms | •     | Impulse F<br>10 ms | ilter 1 Tmin   | Impulse Filter 2 Tmin         |             |           |
| Impulse Filter 0 Tmax<br>None  | •     | Impulse F<br>None  | ilter 1 Tmax   | Impulse Filter 2 Tmax<br>None |             |           |
| Impulse Counters               |       |                    |                |                               |             |           |
| Impulse counter 0 Inpu         | ut    | Impulse c          | ounter 1 Input | Impulse counter 2 Input       |             |           |
| Impulse Filter 0               | -     | Impulse I          | -ilter 1 💌     | Impulse Filter 2              |             |           |
|                                |       |                    |                |                               |             |           |
|                                |       |                    |                |                               |             |           |
|                                |       |                    |                |                               |             |           |
|                                |       |                    |                |                               |             |           |

Здесь можно задать область времени, считаемую логическим импульсом

*– <u>Impulse Filter: Tmin</u>: (none, 1, 2,5,10,20,50,100,200,500ms, 1,2,5,10,30s, 1min)* 

- <u>Impulse Filter: Tmax</u> (none, 1, 2,5,10,20,50,100,200,500ms, 1,2,5,10,30s, 1min)

В устройстве TMTG-3f имеется три счётчика импульсов – окно сообщений *Impulse counters*. Их входом может являться логический импульс. Из выпадающего меню можно выбрать подсчитываемые логические импульсы:

- Impulse Filter внешние импульсы, отнесённые к импульсному фильтру,
- <u>Ерр impulse</u> импульсы, отнесённые ко входной (потребленной) активной энергии, измеренной устройством,
- Ерп импульсы, отнесённые к выходной (рекуперированной) активной энергии, измеренной устройством,
- Едр импульсы, отнесённые ко входной (потребленной) реактивной энергии, измеренной устройством
- Еqn импульсы, отнесённые к выходной (рекуперированной) реактивной энергии, измеренной устройством
- SW Impulse generator импульсы, генерированные программой устройства (см. следующую главу),
- <u>Registratum save ready impulse</u> сохранены данные, записанные устройством,
- <u>RTC impulse</u> импульсы, генерированные часами реального времени (RTC – real time clock) (настройки см. в следующей главе),
- Wave register ready Запись анализатора формы волны готова (Условие триггера выполнена, событие записано. См. в главе: Wave Analizer – Анализатор формы волны)

# • Синхронный сигнал, внутренние часы реального времени – <u>Sychron</u> <u>signal and RTC</u>

TMTG оснащен внутренними часами реального времени. В зависимости от настройки устройство может отслеживать переход летнее/зимнее время. (*Automatic follow daylight save changes*)

Внутренние часы имеют логический выходной импульс, который может быть использован как внутренний синхроимпульс или может быть выведен на выход.— <u>Time synchron source</u>. Период выходных импульсов часов устанавливается в пределе 1 - 60 минут с шагом в 1 минуту в окне *RTC impulse period (min)*.

Часы можно синхронизировать к любому логическому импульсу (кроме своего и синхронного сигнала). <u>(Synchron generator source</u>). По выбранному импульсу часы устанавливаются к следующей целой минуте.

| 👼 VERA                                |                                                                                                                                                           | _ 🗆 🗙 |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| File Ports Devices Measure            | e Options Help                                                                                                                                            |       |
| 😐 🏭 🛍 🚳 💷                             |                                                                                                                                                           |       |
| Vertesz TMTG 1F transducer_1          | Device Params 🛛 🔀                                                                                                                                         |       |
| Hardware Info                         | Digital Outputs Analog Outputs Maximum Guards Registratum Options<br>Communication Digital Inputs Imputse Inputs Synchron signal and RTC Measure Limiters |       |
| Vertesz TMTG 3F v0.90                 | RTC settings                                                                                                                                              |       |
| 230.94V, 1A/5A, LCD                   | Automatic follow daylight save changes                                                                                                                    |       |
| Main Software version                 | Time synchron source                                                                                                                                      |       |
| ID processor software version<br>0.81 | None                                                                                                                                                      |       |
| Serial number<br>V08035               | Impulse Filter 2<br>Synchron Impulse<br>Eop Impulse                                                                                                       |       |
|                                       | Syr Eqp Impulse                                                                                                                                           |       |
| De<br>Cali                            | Synchron ganarator source<br>RTC Impulse                                                                                                                  |       |

См. ещё: 3.3.1.2 главу Часы устройства – *Device Clock*.

### • Измерение – <u>Measure</u>

В верхнем окне сообщений окна, изображённого на следующей картине, можно задать входные коэффициенты трансформации тока и напряжения, а в окне под ним – импульсные эквиваленты энергии.

Модулем измерения генерируется число импульсов, пропорциональных четырём измеренным значениям энергии (*Ws, Wh, kWs, kWh*). Они могут быть использованы источниками сигнала импульсных счётчиков или выходных формирователей импульсов. Эквивалент энергии логических импульсов (сколько энергии соответствует одному сигналу) можно задать в таблице параметров - *Impulse value (Wh/N)*. В окне рядом *Impulse freq@Pnom* можно задать обратную величину, то есть частоту импульсов, при номинальной мощности. (Это как шаг надёжности для устранения неправильного задания, - в случае неправильных данных окно приобретает красный цвет.)

В нижнем окне сообщений задаётся номинальное значение напряжения-Nominal Voltage



| Ĩ  | Digital Outputs         | Ĩ            | Analog (             | Jutnuts         | )        | Maximum Guar    | ds [    | Begistratum () |          |
|----|-------------------------|--------------|----------------------|-----------------|----------|-----------------|---------|----------------|----------|
| I  | Communication           | Digital Inpu | ts                   | Impulse Inputs  |          | Synchron signal | and RTC | Measure        | Limiters |
| 1  | Transformers            |              |                      |                 |          |                 |         |                |          |
|    | Current [A/A]<br>5      | /5           | Voltage [V<br>230,94 | W]              | / 230,94 |                 |         |                |          |
|    |                         |              |                      |                 |          |                 |         |                |          |
| ł  | Current input in use    |              |                      |                 |          |                 |         |                |          |
| -  | C 1A                    |              |                      |                 |          |                 |         |                |          |
|    | ● 5A                    |              |                      |                 |          |                 |         |                |          |
|    | Energie Impulse Value   |              |                      |                 |          |                 |         |                |          |
|    | Impulse Value [Wh/N]    |              | Impulse fre          | eq (N/h) @ Pnom | C.       |                 |         |                |          |
| e  | 11,10200                |              | 12000                |                 |          |                 |         |                |          |
| 1  | C Ws C kWs              |              |                      |                 |          |                 |         |                |          |
| 22 | ● Wh C kWh              |              |                      |                 |          |                 |         |                |          |
| ł  | Voltage Event Detection |              |                      |                 |          |                 |         |                |          |
| 0  | Nominal Voltage         |              |                      |                 |          |                 |         |                |          |
| ł  | 1200,04                 |              |                      |                 |          |                 |         |                |          |
|    |                         |              |                      |                 |          |                 |         |                |          |
|    |                         |              |                      |                 |          |                 |         |                |          |
| 5  |                         |              |                      |                 |          |                 |         |                |          |
| u  |                         |              |                      |                 |          |                 |         |                |          |
| 1  | Load Save               |              |                      |                 |          | ~~              | >>      | Cancel         | ОК       |

### • Дискретные выходы – *Digital outputs*

В окне сообщений *Impulse generators* выбирается источник генераторов импульсов в раскрывающемся окне *Imp.Gen Source*.

В окне *Impulse Gen Twidth* задаётся приемлемая длина импульсов, а в окне *Impulse Gen. Trelax* – время паузы между импульсами.

| 3  |                         | e.                       | 5 5 5                                     | _   |
|----|-------------------------|--------------------------|-------------------------------------------|-----|
| -  | Communication Di        | gital Inputs Impulse Inp | uts Synchron signal and RTC Measure Limit | ers |
|    | Digital Outputs         | Analog Outputs           | Maximum Guards Registratum Options        |     |
| 4  | Impulse generators      |                          |                                           |     |
|    |                         |                          |                                           |     |
|    | Imp. Gen. 0 Source      | Imp. Gen. 1 Source       | Imp. Gen. 2 Source                        |     |
|    | Enn Impulse             | Ean Impulse              | E an Impulse                              |     |
| н  |                         |                          |                                           |     |
| -  | Impulse Gen 0 Twidth    | Impulse Gen 1 Twidth     | Impulse Gen 2 Twidth                      |     |
| н  | 10                      | 10                       |                                           |     |
|    | lioms 💽                 | jiums 💽                  | 10 ms                                     |     |
| 1  |                         |                          |                                           |     |
|    | Impulse Gen U Trelax    | Impulse Gen 1 Trelax     | Impulse Gen 2 Trelax                      |     |
|    | 10 ms 💌                 | 10 ms 🗨                  | 10 ms                                     |     |
| н  | - Invest                |                          | - Invest                                  |     |
|    | 1_ inven                | j_ invert                | j_ inveit                                 |     |
|    | Digital outpus          |                          |                                           |     |
|    | Digital output          |                          |                                           |     |
|    | Digi Output. 0 Source   | Digi Output. 1 Source    | Digi Output. 2 Source                     |     |
|    | Limiter 0               | Limiter 1                | Limiter 2                                 |     |
| e  | Limiter 0 🔨             |                          |                                           |     |
|    | Limiter 1               | Invert                   | Invert                                    |     |
| di | Limiter 2               |                          |                                           |     |
| 2  | Impulse Generator 1     |                          |                                           |     |
|    | Impulse Generator 2     |                          |                                           |     |
| н  | Max Guard 0 SW signal   |                          |                                           |     |
|    | [Max Guard U UVE signal |                          |                                           |     |
|    |                         |                          |                                           |     |
| 1  |                         |                          |                                           |     |
| 5  |                         |                          |                                           |     |

К дискретным выходам можно отнести выходные сигналы формирователей импульсов, <u>(Impulse Generator</u>), переключателей предельных значений <u>(Limiter</u>) и звеньев контроля превышения максимума <u>(Max Guard)</u>. Отметкой квадратика <u>Invert</u> для всех трёх выходов можно задать, чтобы выход

работал по обратной логике вместо прямой (Например, включал или отключал open-collector).

### • Записи – <u>Registratum Options</u>

В устройстве TFMG 3F имеется память FLASH величиной 2 Мбайт. В этой памяти хранится архив. Архив содержит массивы измерения и массивы событий напряжения. Массив измерения записывается в архив под действием синхронного сигнала (задание: <u>Synchron signal and RTC</u>), а массив события напряжения – когда оно наступает. Массивы измерения могут содержать следующие значения опционально:

Щёлчком на пустой квадратик можно выбрать записываемые физические величины из следующих :

| Communication Digital Inputs Impulse I                | nputs Synchron signal and RTC Measure Limiters |
|-------------------------------------------------------|------------------------------------------------|
| Digital Outputs     Analog Outputs     Analog Outputs | Maximum Guards Hegistratum Options             |
|                                                       |                                                |
| I to N voltages                                       | L to L voltages                                |
| Voltage symmetrical components                        | └─ Voltage THD                                 |
| ✓ L currents                                          | N current                                      |
| Current symmetrical components                        | Current THD                                    |
| Current CF                                            |                                                |
| ✓ Total active power                                  | Phase active power                             |
| ▼ Total reactive power                                | Fhase reactive power                           |
| Total virtual power                                   | F Phase virtual power                          |
| Total power factor                                    | F Phase power factor                           |
| 🔲 Register min/max values                             |                                                |
| ✓ Periodic energie                                    | J  ✓ Counters                                  |
| 🥅 Total energie                                       |                                                |



| Оп  | цион                                         | Измеренные величины после выбора опциона                                                                                       |
|-----|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Мгн | ювенные значения                             |                                                                                                                                |
| •   | Фазные напряжения                            | $U_R, U_S, U_T$                                                                                                                |
| •   | Линейные напряжения                          | $U_{RS}, U_{ST}, U_{TR}$                                                                                                       |
| •   | Симметричные составляющие фазного напряжения | $U_1, U_2, U_0$                                                                                                                |
| •   | Гармоническое искажение фазного напряжения   | THD <sub>UR</sub> , THD <sub>US</sub> , THD <sub>UT</sub>                                                                      |
| •   | Фазные токи                                  | $I_R, I_S, I_T$                                                                                                                |
| •   | Ток нулевого провода (расчётный)             | I <sub>N</sub>                                                                                                                 |
| •   | Симметричные составляющие фазного тока       | $I_1, I_2, I_0$                                                                                                                |
| •   | Гармоническое искажение фазного тока         | THD <sub>IR</sub> , THD <sub>IS</sub> , THD <sub>IT</sub>                                                                      |
| •   | Крестфактор фазного тока                     | CF <sub>IR</sub> , CF <sub>IS</sub> , CF <sub>IT</sub>                                                                         |
| •   | Активные мощности                            | $P_{R}, P_{S}, P_{T}, \Sigma P$                                                                                                |
| •   | Реактивные мощности                          | $Q_{R}, Q_{S}, Q_{T}, \Sigma Q$                                                                                                |
| •   | Полные мощности                              | $S_{R}$ , $S_{S}$ , $S_{T}$ , $\Sigma S$                                                                                       |
| •   | Значения коэффициентов мощности              | $PF_{R}$ , $PR_{S}$ , $PF_{T}$ , $PF_{\Sigma}$                                                                                 |
| -   | Опцион минимума и максимума                  | Если этот опцион не выбран, то записывается среднее                                                                            |
|     |                                              | значение выбранных мгновенных значений, измеренное                                                                             |
|     |                                              | между двумя синхронными сигналами.                                                                                             |
|     |                                              | Если же выбран, то помимо среднего значения выбранных                                                                          |
|     |                                              | мгновенных значений в массив измерения записывается                                                                            |
|     |                                              | также минимум и максимум, измеренные между двумя                                                                               |
|     |                                              | синхронными сигналами                                                                                                          |
| Зна | чения энергии                                |                                                                                                                                |
| •   | Промежуточные значения энергии               | Значения энергии <i>E</i> <sub>P+</sub> , <i>E</i> <sub>P-</sub> , <i>E</i> <sub>Q+</sub> , <i>E</i> <sub>Q-</sub> между двумя |
|     |                                              | синхронными сигналами                                                                                                          |
| Зна | чения счётчиков                              |                                                                                                                                |
|     | Значения счётчиков                           | CNTR <sub>0</sub> , CNTR <sub>1</sub> , CNTR <sub>2</sub>                                                                      |

### • Переключатели пределов - Limiters

Входными параметрами трёх переключателей пределов могут быть мгновенные и промежуточные значения измерения энергии и значения счётчиков импульсов. Для каждого переключателя пределов можно задать индивидуально порог переключения, гистерезис и полярность.

В трёх раскрывающихся окнах *Limiter Source* можно выбрать следующие источники предельных значений (Нижний или верхний предел выбирается кнопкой *Invert*):

- *<u>Ir, Is, It</u> –* фазные токи
- 4 <u>*Ptot, Qtot, Stot*</u> Суммарная активная, реактивная и полная мощность
- 4 *<u>PFtot</u> суммарный коэффициент мощности*
- Iz, Ip, In симметричные составляющие тока (нулевая, положительная, отрицательная)
- 4 <u>THDir, THDis, THDit</u> полное гармоническое искажение фазных токов
- *CFir, CFis, CFit* крестфакторы фазных токов
- IO ток по нулевому проводу
- 4 <u>Urs, Ust, Utr</u> линейные напряжения
- <u>THDur, THDus, THDut</u> полное гармоническое искажение фазных напряжений
- *<u>Pr, Ps, Pt</u> – активные мощности по фазам*
- *Qr, Qs, Qt* - реактивные мощности по фазам
- 🖶 <u>Sr, Ss, St</u> полные мощности по фазам

# Ерр, Ерп, Qpp, Qpn – активная и реактивная потребленная и рекуперированная энергия

| Digital Outputs | Analog O       | lutputs             | Maximum Guards          | Registratum 0 | ptions   |
|-----------------|----------------|---------------------|-------------------------|---------------|----------|
| Communication   | Digital Inputs | Impulse Inputs      | Synchron signal and RTC | Measure       | Limiters |
| Limiter source: |                |                     |                         |               |          |
| ls 💌            |                |                     | 🔲 Invert                |               |          |
| Limit Is [ A]   | Limit [%]      | Hyst. +/- Is [ A]   | Hyst. +/- [%]           |               |          |
| 22.5            | 90             | 2.5                 | 10                      |               |          |
|                 |                |                     |                         |               |          |
|                 | 1              |                     |                         |               |          |
| 0 5             | 10             | 15 20               | 25 30                   |               |          |
| Limiter source: |                |                     |                         |               |          |
|                 |                |                     | Invert                  |               |          |
| Limit LIs [V]   | Limit [%]      | Hust +/-11s[V]      | Hust +/- [%]            |               |          |
| 207.85          | 90             | 23.094              | 10                      |               |          |
|                 | 1              | 1                   | 1                       |               |          |
|                 |                | 7777                |                         |               |          |
| 0 46.188        | 92.376 1       | 138.56 184.75       | 230.94                  |               |          |
| 1.5.5           |                |                     |                         |               |          |
| Limiter source: |                |                     | Invert                  |               |          |
| Ptot 💌          | 1.1.1.1.10.0   |                     |                         |               |          |
| Limit Ptot [KW] | Limit [%]      | Hyst. +/- Ptot [KW] | Hyst. +/- [%]           |               |          |
| 15.588K         | 190            | 1.7321K             | 10                      |               |          |
|                 |                |                     | 77777                   |               |          |
| -17.32k         | -8.6602k       | 0k 8.6602           | 2k 17.32k               |               |          |
| ,               |                |                     |                         |               |          |
|                 |                |                     |                         |               |          |
|                 |                |                     |                         |               |          |
| load   Saur     |                |                     |                         | 1 Canad 1     | or l     |
|                 | ·              |                     |                         | Cancel        |          |

### • Звенья контроля превышения максимума – Maximum Guards

В устройстве ТМТG 1F имеется три простых звена контроля превышения максимума. Они могут быть включены в каскадный режим работы <u>(Cascade Maxguards )</u>, таким образом, они работают в качестве одного трёхступенчатого звена контроля превышения максимума. Входными сигналами звеньев контроля превышения максимума могут быть монотонно возрастающие величины измерения, обнуленные синхронным сигналом, то есть четыре промежуточных счётчика энергии, три счётчика импульсов и кроме того, сумма трёх счётчиков импульсов. Они могут быть выбраны в выпадающих окнах *Max. Guard source*.

| Communication Di                                                                                              | igital Inputs   Impulse Input | s   Synchron signal and RTC  | Measure Limiters    |
|---------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|---------------------|
| Digital Outputs                                                                                               | Analog Outputs                | Maximum Guards               | Registratum Options |
| Maximum guards                                                                                                |                               |                              |                     |
| Cascade maximum gua                                                                                           | rds                           |                              |                     |
| Max. Guard 0 Source:                                                                                          | Max. Guard 1 Source:          | Max. Guard 2 Source:         |                     |
| Impulse Cntr 0 🔹                                                                                              | Impulse Cntr 1 🔹              | Impulse Cntr 2               |                     |
| Consumed Active Energie<br>Backfeed Active Energie<br>Inductive Reactive Energie<br>Canative Reactive Energie | Deadtime [s]:<br> 300         | Deadtime [s]:<br> 300        |                     |
| Impulse Cntr 0<br>Impulse Cntr 1<br>Impulse Cntr 2<br>Sum of Imp. Cotto                                       | Operating Period [s]:<br>900  | Operating Period [s]:<br>900 |                     |
| Limit [N]                                                                                                     | Limit [N]<br>10k              | Limit [N]<br>10k             |                     |
|                                                                                                               |                               |                              |                     |

Каждое звено контроля превышения максимума имеет два выхода: сигнал переключения и выход сигнализации превышения.

Звено контроля превышения максимума с момента запуска до истечения мёртвого времени *T*<sub>D</sub> (*Deadtime* устанавливаемого в таблице параметров) не работает.



# Рис. 16: Работа звеньев контроля превышения максимума в автономном режиме работы

По истечении мёртвого времени (окно Deadtime [s]) устройство осуществляет расчёт из входного сигнала. Если ожидается превышение заданного предела, то выход переключения звена контроля превышения переходит в состояние 1. Если превышение действительно наступает, то на выходе, сигнализирующем превышение, тоже появляется 1. Оба выхода квитируются следующим синхронным сигналом. Требуемое время слежения T<sub>F</sub> задаётся в таблице параметров. (Окно Operating period). Его значение должно совпадать с периодом синхронного сигнала. Задать его нужно, потому что если синхронный сигнал имеет внешний источник, то для устройства не известна периодичность его прихода. Как правило, при электрических измерениях рассматривается согласованная мощность за четверть часа = 900 сек, а при газовых измерениях – час=3.600 сек. Число импульсов (N), пропорциональное согласованной мощности, задаётся в окне Limit (N).





Рис. 17: Работа звеньев контроля превышения в каскадном режиме

При каскадном режиме (отмечено <u>*Cascade maximum guards*</u>) все три звена контроля превышения максимума работают по режиму звена 0.

В окне <u>Max Guard 0. Source - Limit(N) нужно задать</u> непревышаемое (предельное) значение.

### • Аналоговые выходы – <u>Analog Outputs</u>

Программа VERA 2: описание пользователя

Устройство имеет три аналоговых выхода. К каждому из выходов можно отнести один из формирователей характеристик.



| Communication              | Digital Inputs I Imp                  | ulse Inputs      | Synchron signal and RT    | C Measur | e Limiters     |
|----------------------------|---------------------------------------|------------------|---------------------------|----------|----------------|
| Digital Outputs            | Analog oup                            |                  | Maximum Guards            | Hegis    | tratum Uptions |
| Analog characteristic 1 Ch |                                       | -1               |                           |          |                |
| U. Characteristic   I. Ch  | aracteristic I   2. Unaracteristi     | 5                |                           |          | 1              |
|                            |                                       |                  |                           |          |                |
| ls                         | ▼                                     |                  |                           |          | 20 mA          |
| ls [A] LO                  |                                       |                  |                           |          |                |
| 0                          |                                       |                  |                           |          |                |
| lout [mA] @ I LO           |                                       |                  |                           |          | 10 mA          |
| 0                          |                                       |                  |                           |          |                |
| Is [A] HI                  |                                       |                  |                           |          | 0 mA           |
| 25                         |                                       |                  |                           |          |                |
| lout [mA] @1 HI            |                                       |                  |                           |          | 10.4           |
| 20                         | · · · · · · · · · · · · · · · · · · · |                  |                           |          | IU MA          |
| Imin [mA]                  |                                       |                  |                           |          |                |
| 0                          |                                       |                  |                           |          | -20 mA         |
| lmax [mA]                  |                                       |                  |                           |          |                |
| 24                         | -25 A                                 | -12.5 A          | 0 A                       | 12.5 A   | 25 A           |
|                            |                                       |                  |                           |          |                |
|                            |                                       |                  |                           |          |                |
|                            |                                       |                  |                           |          |                |
| Analog outputs             |                                       |                  |                           |          |                |
| 0. Output Source           | 1. Output Source                      | . 2              | Output Source             |          |                |
| 0. Characteristic gena     | arato 🗾 🕺 1. Characteristic           | ; genarato 💌 🛛 2 | . Characteristic genarato | <b>-</b> |                |
|                            |                                       |                  |                           |          |                |
|                            |                                       |                  |                           |          |                |

Соответствие между измеренными значениями и выходным током осуществляется тремя аналоговыми формирователями характеристик. Входной величиной трёх аналоговых формирователей характеристик может быть результат любого измерения. Можно задать линейную характеристику с нижним и верхним уровнем насыщения. Если на выходе требуется стандартный аналоговый сигнал, то целесообразно задать следующие значения:

- -20 +20 mA
- 0-20 mA
- 4-20 mA
- 0-5 mA

В окне сообщений <u>Analog Characteristics</u> можно выбрать, требуется ли параметризировать выход № 0, 1, или 2. (ушко <u>0.,1.,2. Characteristic</u>).



В выпадающем окне можно выбрать параметр, значения которого требуется анализировать аналоговыми сигналами.

Если, например, на аналоговом выходе желательно иметь Q<sub>tot</sub> = суммарную реактивную мощность, но для нас представляет интерес лишь индуктивная реактивная мощность, то нужно задать следующие данные:



| ). Characteristic   1. Characteristic1 | 2. Characteristic            |                            |            |             |
|----------------------------------------|------------------------------|----------------------------|------------|-------------|
|                                        |                              |                            |            |             |
| Qtot 💌                                 |                              |                            |            | 20 mA       |
| Qtot [VAR] LO                          |                              |                            |            |             |
| 0                                      |                              |                            |            | 10 mA       |
| lout [mA] @ I LO                       |                              | /                          |            | TOTIC       |
|                                        |                              |                            |            |             |
| Utot [VAH] HI                          |                              |                            |            | 0 mA        |
| aut mA1 @ L HI                         |                              |                            |            |             |
| 20                                     |                              |                            |            | -10 mA      |
| Imin (mA)                              |                              |                            |            |             |
| 0                                      |                              |                            |            | 20 mA       |
| lmax (mA)                              |                              |                            |            | -20 mA      |
| 24                                     | -3.4641 kVAB -1.732 kV/      | AR 0 KVAR                  | 1.732 kVAB | 3.4641 kVAF |
|                                        |                              |                            |            |             |
|                                        |                              |                            |            |             |
|                                        |                              |                            |            |             |
| alog outputs                           |                              |                            |            |             |
| 0. Output Source                       | 1. Output Source             | 2. Output Source           |            |             |
| 0. Characteristic genarato 💌           | 1. Characteristic genarato 💌 | 2. Characteristic genarato | <b>•</b>   |             |

- <u>Qtot [VAR] LO</u> Пусть нижнее значение Q будет 0 VAR, этому должно соответствовать на аналоговом выходе 0 mA <u>(lout[mA@l LO)</u>
- Программой VERA на основе заданных для измерений Measure входных значений (в данном случае 5 А, и 230,94 V) вычисляется номинальное значение Q, равное 3,4661 kVar (это видно на абсциссе графика) и это автоматически записывается в окно <u>Qtot[VAR] HI</u>, а в графу <u>lout[mA]@I HI</u> под ним – значение 20 mA (верхний предел стандартного аналогового сигнала).

Требуется однако, чтобы 20 mA соответствовало 2500 VAR, поэтому в этих двух окнах нужно указать эти значения.

 В нижних двух окнах (*Imin, Imax*) соответственно можно срезать нижний и верхний пределы. В настоящем примере внизу 0, а наверху обычный Imax\*1,2=24 mA.

В окне сообщений <u>Analog outputs</u> в выпадающем окне можно выбрать, к какой характеристике (<u>0,1,2. Characteristic</u>) отнести выход.

### 3.3.1.2 Часы устройства – Device Clock

Устройства ТМТG имеют внутренние часы реального времени. В зависимости от настройки, устройством учитывается зимнее/летнее время. Часы можно синхронизировать любым логическим импульсом (кроме собственного импульса и синхронного сигнала). Под действием выбранного импульса часы переставляются к следующей целой минуте. Если щёлкнуть на клавишу – <u>Device Clock - Set now</u> левого нижнего окна сообщений, то устройство синхронизируется к часам компьютера.

Программа VERA 2: описание пользователя



|                                                          | Reset<br>Bootloader | State<br>Sync src: Ur                                                                               |
|----------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------|
| Device Clock<br>2009.03.04 19:35:47<br>Daylight save +1h | Set now             | Records     Voltage Events       Record count (Unread / Total)     State       6 / 104     Read OK. |
| Device Address<br>Port<br>bőrönd                         | Ada                 | dress                                                                                               |

Примечание: В окне <u>State отметка Sync src: Ur</u> (синхронный источник) указывает на состояние, к частоте напряжения какой фазы в данный момент синхронизируется собственная частота выборки!

### 3.3.1.3 Отображение результатов измерения – Measure Data

Наблюдаемые непрерывные результаты измерения можно выбрать раскрытием ушек на верхней части окна сообщений правой стороны *Measure Data* (рис.14) В таблице V ниже даётся значение сокращений физических единиц измерения, указанных над окнами измерения.

| The second of the second |                             |           |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|--|--|--|
| Measure Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |           |  |  |  |
| Base Values Voltage Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Power Energy Counters Digit | al inputs |  |  |  |
| [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |           |  |  |  |
| Ur [V]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Us [V]                      | Ut [V]    |  |  |  |
| 222 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 222.0                       | 022 7     |  |  |  |
| 233,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 233,9                       | 233,1     |  |  |  |
| Ir [A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Is [A]                      | It [A]    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |           |  |  |  |
| 4,764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,764                       | 4,761     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |           |  |  |  |
| Ptot [W]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Utot [VAR]                  |           |  |  |  |
| 3 3302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 0382                      |           |  |  |  |
| 5,555K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,050K                      |           |  |  |  |
| Stot [VA]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PFtot [W/VA]                |           |  |  |  |
| 0.0401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 000                       |           |  |  |  |
| 3,340K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,000                       |           |  |  |  |
| , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , .                         |           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |           |  |  |  |



|                       | Mártákoru voár |                                                         |
|-----------------------|----------------|---------------------------------------------------------|
|                       | Mertekegyseg   | фазиций ток /-                                          |
|                       | Ir(A)          |                                                         |
| -<br>Б                | IS(A)          |                                                         |
| ени<br>s              | It(A)          |                                                         |
| epe                   | Ur(V)          |                                                         |
| 13М<br>Va             | Us(V)          |                                                         |
| le v<br>ise           | Ut(V)          |                                                         |
| $B_{\mathcal{B}}$     | Ptot(W)        | Суммарная активная мощность                             |
| <b>a</b> 30           | Qtot(Var)      | Суммарная реактивная мощность                           |
| Ю                     | Stot(V/A)      | Суммарная полная мощность                               |
|                       | Pftot(W/VA)    | Суммарныи коэффициент мощности                          |
|                       | lz(A)          | Составляющая тока нулевой последовательности            |
|                       | lp(A)          | Составляющая тока положительной последовательности      |
| ent                   | In(A)          | Составляющая тока отрицательной последовательности      |
| nrre                  | THDir(%)       | Гармоническое искажение тока фазы R                     |
| O I                   | THDis(%)       | Гармоническое искажение тока фазы S                     |
| Хo                    | THDit(%)       | Гармоническое искажение тока фазы Т                     |
| H                     | Cfis(A/A)      | Крестфактор тока фазы <i>R</i>                          |
|                       | Cfir(A/A)      | Крестфактор тока фазы S                                 |
|                       | Cfit(A/A)      | Крестфактор тока фазы Т                                 |
|                       | In(A)          | Ток нулевого провода                                    |
| ۵.<br>۵               | Urs(V)         | Линейное напряжение U <sub>RS</sub>                     |
| age                   | Ust(V)         | Линейное напряжение U <sub>ST</sub>                     |
| /olt                  | Utr(V)         | Линейное напряжение U <sub>TR</sub>                     |
|                       | Uz(V)          | Составляющая напряжения нулевой последовательности      |
| Ч                     | $U_{\rm D}(V)$ | Составляющая напряжения положительн. последовательности |
| Kel                   | Un(V)          | Составляющая напряжения отрицательн. последовательности |
| вdi                   | THDur(%)       | Гармоническое искажение напряжения фазы R               |
| Har                   | THDus%)        | Гармоническое искажение напряжения фазы S               |
| -                     | THDut(%)       | Гармоническое искажение напряжения фазы Т               |
|                       |                | Активная мощность фазы <i>R</i>                         |
|                       |                | Активная мощность фазы S                                |
| ier                   | D+(\\/)        | Активная мошность фазы Т                                |
| иос                   | Or(V(ar))      | Реактивная мошность фазы <i>R</i>                       |
|                       |                | Реактивная мощность фазы S                              |
| ynê                   |                | Реактивная мошность фазы 7                              |
| tmé                   |                | Попная мошность фазы R                                  |
| esí                   | SI(V/A)        | Полная мощность фазы Х                                  |
| [elj                  | SSV/A)         |                                                         |
|                       | St(V/A)        |                                                         |
|                       | PFr(W/VA)      |                                                         |
|                       | PFt(W/VA)      |                                                         |
|                       | PFs(W/VA)      |                                                         |
| ر "<br>۳              | Epn(Wh)        | промежуточная потреоленная активная энергия             |
| rgić<br>e <i>rg</i> . | Epp(Wh)        | промежуточная рекуперированная активная энергия         |
| Ene                   | Eqn(Varh)      | I іромежуточная индуктивная реактивная энергия          |
| ш                     | Eqp(Varh)      | I Іромежуточная ёмкостная реактивная энергия            |
|                       |                | Счётчик импульсов 0                                     |
|                       |                | Счётчик импульсов 1                                     |
| Counters              |                | Счётчик импульсов 2                                     |

### Таблица V – величины измерения

### 3.3.1.4 Архивная память, массивы измерения, события напряжения

| 0.81                        | Read all records                                  |
|-----------------------------|---------------------------------------------------|
| Serial number               | Settings                                          |
| JV08035                     | File name                                         |
|                             |                                                   |
|                             | Rewrite file Rewrite file Browse                  |
| Dev. init                   |                                                   |
| Calibration                 | Cancel OK                                         |
| Params                      |                                                   |
| Reset                       | State                                             |
| Bootloader                  | Sync src: Ur                                      |
| Device Clock                |                                                   |
|                             | Measure Records Voltage Events                    |
| 2009.05.04 09:18:49         | Persent asympt (Listeral / Tatal) State           |
| ▼ Daylight save +1h Set now | Hecki Count (Shirea / Fola) State Automat Cica Au |
| AutoSet                     | Read all Read new                                 |
|                             | - Constitu                                        |
| Port A                      | ddress State                                      |
| bốrönd 💌                    | 16 🔆 Start Stop Wait for answer                   |

### Считывание архивной памяти, регистрированной устройством:

В устройстве TFMG 3F имеется память FLASH размером в 2Mbyte. В этой памяти хранится архив, содержащий массивы изиерения и массивы событий напряжения. Щёлчком на ушко <u>Measure record</u> можно видеть число массивов в памяти и число несчитанных массивов. Щёлчком же на ушко Read all можно выбрать место сохранения и необходимость надёжного сохранения <u>(Make backup file)</u>.

Возможности считывания и удаления массива даются в четырёх ячейках: <u>AutoRead, Clear All, Read All и Read new</u> справа. Ячейка <u>AutoRead</u> при наличии связи (коммуникации) непрерывно считываются данные. Ячейка <u>Read All</u> считывает каждый массив, имеющийся в памяти Flash устройства. Ячейка <u>Read</u> <u>new</u> считывает до того времени ещё не считанные данные. Ячейка же <u>Clear All</u> удаляет все записанные раньше данные.

Щёлчком на <u>Voltage Events</u> можно видеть число событий напряжения и число ещё не считанных из них событий. Сохранение производится так же, как и в случае массивов.

Массив измерения записывается в архив под действием синхронного сигнала. Возможный состав массивов измерения указан в главе <u>*Registratum Options*</u>:

Внимание! Изменение опционов записи сопровождается немедленным удалением всех сохранённых массивов измерения, т.к. архив может хранить лишь массивы одинаковой структуры!

События напряжения – <u>Voltage Events</u>



При выходе значения RMS любого из фазных напряжений за пределы области  $0,9 \cdot U_{NE} \dots 1, 1 \cdot U_{NE}$ , имеет место событие напряжения. ( $U_{NE}$  – номинальное напряжение, задаваемое в таблице параметров). При наступлении события напряжения в архив записывается массив события напряжения. Сохранение массива события напряжения происходит, когда значение RMS напряжения выходит за пределы области, перечисленной ниже в таблице VI.:

| Область напряжения [%] | Значение напряжения при<br><i>U<sub>NE</sub>=</i> 230,94 [V] | Тип                |  |  |  |  |
|------------------------|--------------------------------------------------------------|--------------------|--|--|--|--|
| 120                    | 277,13                                                       |                    |  |  |  |  |
| 115120                 | 265,58277,13                                                 | Перенапряжения     |  |  |  |  |
| 110115                 | 254,03265,58                                                 |                    |  |  |  |  |
| 7090                   | 161,66207,85                                                 |                    |  |  |  |  |
| 4070                   | 92,376161,66                                                 |                    |  |  |  |  |
| 2040                   | 46,18892,376                                                 | провалы напряжения |  |  |  |  |
| 1020                   | 23,09446,188                                                 |                    |  |  |  |  |
| 010                    | 023,094                                                      | Спад напряжения    |  |  |  |  |

### Таблица VI: Области событий напряжения

Массив события напряжения содержит номер фазы, идентификатор оставленной области напряжения, время выхода напряжения за пределы области, время нахождения напряжения в заданной области и значение напряжения. Это значение - в случае перенапряжения - равно максимальному значению напряжения за время нахождения в заданной области, а в случае провала и спада напряжения – минимуму напряжения.

## 3.3.2 Анализатор формы волны ТМТG-3f – <u>Wawe analizer</u>

Страница анализа формы волны даёт возможность на регистрацию формы сигнала, а также на анализ спектра, что выбирается ушками наверху левого верхнего окна сообщений: *Wawe – Spectrum*.

В окне сообщений <u>*Hardware Info,*</u> расположенном в левом верхнем углу левого верхнего окна сообщений, показаны описательные данные, считанные из устройства, в обоих случаях.





Рис. 18: Анализатор формы волны – Wave analizer

### 3.3.2.1 Анализатор формы волны (Регистрация формы сигнала)

Устройство может регистрировать сигналы шести аналоговых каналов (3х*I* и 3х*U*). В буфере формы сигнала помещается последовательность длиной 512 выборок (160ms, 8 периодов). Разрешающая способность сохраненных выборок - 8-разрядная, служит прежде всего для зрительной оценки. Запись формы сигнала производится в RAM, поэтому при выключении устройства сохранённые данные теряются.

Запись формы сигнала управляется условием запуска (trigger). В буфер формы сигнала под действием условия запуска записываются последние 512 выборок каналов. В таблице параметров можно задать число выборок, записываемых до и после выполнения условий запуска.

Запись формы сигнала запускается командой *Start*. Заполнение выборок в буфер уже начинается в этот момент. Только так возможна запись выборок до выполнения условий запуска. Буфер содержит всегда последние 512 выборок шести каналов. После выполнения условий запуска в буфер записывается ещё *N*<sub>POST</sub> выборок, затем сбор данных прекращается. Тогда возможно считывание содержания буфера формы сигнала. Командой *start* стирается буфер формы сигнала и вновь запускается весь процесс.

В окне *State* на правой нижней части можно видеть состояние считывания. После окончания считывания на графике появляются формы волны.

Если держать левую кнопку мыши в нажатом состоянии, то можно передвигать оси X и Y, а если поместить курсор в центре графика, то можно передвигать всё. Используя катающийся шарик мыши, возможно увеличение или уменьшение. Автоматическое масштабирование возможно щёлчком на название (Ur,s,t, Ir,s,t) волны, появляющееся в правом верхнем углу графика.

Условие запуска выполняется в следующих случаях:

• Под действием импульса, генерированного параметром, выбранным под ушком *Trigger Impulse* 

Если выбирается это условие запуска, то при настройках выходов, рассмотренных в главах выше, источником импульса - <u>Impulse source –</u> нужно выбрать тот же самый параметр, который здесь. (Это лишь возможность, на практике не используется.)

| File Ports Devices Measure Optio    | ns Heip        |                                                                                                    |                                       |
|-------------------------------------|----------------|----------------------------------------------------------------------------------------------------|---------------------------------------|
| 😐 🏭 🏙 🚳 🚇 🜆                         | · **           |                                                                                                    |                                       |
| Vertesz TMTG 1F transducer_1 Vertes | z TMTG 3F Wave | analizer_2   Vertesz TMTG 3F transducer_0   Vertesz TITxxP/D transducer_4   Vertesz TITxxP/D trans | sducer_3 Vertesz IFM P01 transducer_5 |
| Waves Spectrum                      |                |                                                                                                    |                                       |
| Hardware Info                       |                | Tringer Settings                                                                                   |                                       |
| Hardware                            |                |                                                                                                    |                                       |
| Vertesz TMTG 3F v0.90               | - г            |                                                                                                    |                                       |
| Main Software version               | U I            |                                                                                                    | <i>r'</i> Ur                          |
| 0.91                                |                | · · · · · · · · · · · · · · · · · · ·                                                              | /* Us                                 |
| Serial number                       |                | Trigger Impulse                                                                                    | / Ut                                  |
| V08035                              |                |                                                                                                    | ·····                                 |
|                                     |                | None                                                                                               |                                       |
| Wave register settings              |                | Epp Impulse                                                                                        |                                       |
| Auto restart                        | 60 -           | A Eqp Impulse                                                                                      |                                       |
|                                     |                | SW Impulse Generator Cond. 3 Cond. 4 Cond. 5                                                       |                                       |
| Start Manual trig.                  |                | Resgistratum Save Ready                                                                            |                                       |
|                                     | 40 -           | Wave Register Ready  C Wave                                                                        |                                       |
| Stop I rig. settings                |                | e RMS                                                                                              |                                       |
|                                     |                |                                                                                                    |                                       |
| 🔽 Ur                                | 20 -           | Edge                                                                                               |                                       |
| Us Us                               |                | C Low to high                                                                                      |                                       |
|                                     |                | • high to low                                                                                      |                                       |
| ,• o.                               |                |                                                                                                    |                                       |
| lr Ir                               |                |                                                                                                    | 80 10                                 |
| 🔽 İs                                |                |                                                                                                    |                                       |
| It It                               |                | 230                                                                                                |                                       |
|                                     | <              |                                                                                                    | State Stopped                         |
|                                     |                |                                                                                                    |                                       |
| Port Port                           | Address        | I Save to flash Cancel OK                                                                          |                                       |
| bốrönd 👻                            | 16             | Start Stop OK                                                                                      |                                       |
| ,                                   | · ·            |                                                                                                    |                                       |
|                                     |                |                                                                                                    |                                       |

### • При выполнении любого из шести аналоговых условий запуска.

Шесть аналоговых условий запуска могут быть заданы в таблице параметров – <u>Analog Trigger Conditons</u>

Под ушками <u>Cond 0 – Cond 5</u> можно выбрать, условие тока или напряжения какой фазы задать.

В том же самом окне сообщений можно выбрать, чтобы запись началась на основе данных по реальному действующему значению – True <u>RMS</u>, или мгновенному значению – <u>Wave</u>.

Предельное значение задаётся в окне сообщений *Level*.



| 😐 🎬 🛍 😳 🚭 🔝 📼                                       |                                                 |                                             |
|-----------------------------------------------------|-------------------------------------------------|---------------------------------------------|
| Vertesz TMTG 3F transducer_3 Vertesz TMTG 3F Wave a | inalizer_4                                      |                                             |
| Waves Spectrum                                      |                                                 |                                             |
| Hardware Info                                       | 📕 Ingger settings                               |                                             |
| Hardware                                            | I rigger Position                               |                                             |
| Vertesz TMTG 3F v0.90                               |                                                 | LAST BALLAND                                |
| Main Software version                               |                                                 | /∃\ ∃ ∃   /∃\ ∃ ∃   <b>/</b> * ∪r           |
| 0.90                                                |                                                 | / i t i · · · i · · f / i · f · i · · · · · |
| Serial number 200                                   | Trigger Impulse                                 |                                             |
| V07309                                              |                                                 |                                             |
|                                                     | None                                            |                                             |
| Wave register settings                              |                                                 | Y                                           |
| Auto restart                                        | Analog trigger conditions                       |                                             |
|                                                     | Cond. 0 Cond. 1 Cond. 2 Cond. 3 Cond. 4 Cond. 5 |                                             |
| Start Manual trig,                                  | Source                                          |                                             |
| Stop Trig settings                                  | ( Wave                                          |                                             |
|                                                     | CRMS                                            | }                                           |
|                                                     |                                                 |                                             |
| Vr Ur                                               | Edge                                            |                                             |
| □ Us -200 +                                         | C Low to high                                   |                                             |
| 🗖 Ut 👘                                              | • high to low                                   | } <del>{</del> <del>}</del> } <del>}}</del> |
|                                                     |                                                 |                                             |
| <b>•</b>                                            | Level D/I                                       |                                             |
|                                                     | 230                                             |                                             |
| T It                                                |                                                 |                                             |
| lo <                                                |                                                 | State Ready                                 |
| Device Address                                      | Gancel OK                                       |                                             |
| Port Address                                        |                                                 |                                             |
| vera 16                                             | Start Stop                                      |                                             |
|                                                     |                                                 |                                             |
|                                                     |                                                 |                                             |

Каждое из аналоговых условий запуска состоит из следующих данных:

<u>Source</u> – Источник сигнала:

- Нет. Тогда данное аналоговое условие запуска выключено (не используется).
- Мгновенное значение U<sub>1</sub>, U<sub>2</sub>, U<sub>3</sub>, I<sub>1</sub>, I<sub>2</sub> или I<sub>3</sub> (Актуальное значение сигнала выборки - <u>Wave</u>)
- Действующее значение U<sub>1</sub>, U<sub>2</sub>, U<sub>3</sub>, I<sub>1</sub>, I<sub>2</sub> или I<sub>3</sub> <u>RMS</u>

### • Знак изменения сигнала

В окне сообщений *Edge* можно выбрать, чтобы заданным значением принять условие верхнего предела – *Low to high*, или нижнего – *high to low*.

- о Положительное: *(Low to high)* 
  - Условие запуска выполняется, если значение выбранного источника сигнала переходит предельное значение и становится больше него.
- о Отрицательное: (High to low)

Условие запуска выполняется, если значение выбранного источника сигнала переходит предельное значение и становится меньше него.

### 3.3.2.2 Анализатор спектра – Spectrum

Содержание гармоник сигналов тока и напряжения рассчитывается алгоритмом FFT (Быстрое преобразование Фурье) из выборок за восемь периодов. Из устройства можно считывать значение RMS гармонических компонентов сигнала 50Hz (основной + 30 гармоник) (рис. 19).





компоненты

На оси X изображена основная гармоника 50 Hz и далее через 50 Hz вверх до 1550 Hz - всего 31 составляющая.

На оси Y изображены значения гармоник, для напряжения в вольтах, а для тока – в амперах, или же, если отметить квадратик *Logaritmic scale*, то в обоих случаях – в dB.

# 3.4 TMTG-1f

Устройства ТМТG 1F служат для измерения, записи следующих величин, а также аналоговой (генератор тока) и дискретной (RS485, ModBus) передачи на одной из фаз сетей низкого напряжения:

- Действительные действующие значения (*I, U*)
- Мощности, коэффициент мощности (P, Q, S, PF)
- Потребленная и рекуперированная активная, индуктивная и ёмкостная реактивная энергия (<u>*E<sub>P+</sub>*, *E<sub>P-</sub>*, *E<sub>Q+</sub>*, *E<sub>Q</sub>*)
  </u>
- <u>Etotal</u> суммарный счёт энергии
- <u>Eqhr</u> промежуточный счёт энергии (min., quarter, hour минута, четверть часа, час, выбираемые в окне сообщений <u>Impulse Counter</u> главы импульсные входы – <u>Impulse inputs</u>)

| VERA                                     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                       |
|------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------|
| File Ports Devices Measure Options H     | lelp                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                       |
| 😐 🏭 🛍 🚳 🚳 🔝 i                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                       |
| Vertesz TMTG 1F transducer_1 Vertesz TMT | IG 3F Wave analizer_2 Vertesz TMT( | G 3F transducer_0 Vertesz TITxxP/D tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsducer_4 Vertesz TITxxP/D trans | sducer_3 Vertesz IFM P01 transducer_5 |
| Hardware Info                            | Measure Data                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                       |
| Hardware                                 | U [V]                              | 1 [A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PF [W/VA]                        |                                       |
| Vertesz TMTG 1F v0.90                    | 230,9                              | 4,859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,000                            |                                       |
| Device input configuration               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                       |
| 230.94V, 1A/5A                           | PWI                                | O IVAR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S IVA]                           |                                       |
| Device output configuration              | 1 1 2 2 1-                         | 0.0141-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1 2 2 1-                       |                                       |
| Digi. Uutu, Digi. In T, Ana. Uut T, An   | 1,123K                             | 0,014k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I,IZZK                           |                                       |
| 1.01.0                                   |                                    | Î de la companya de l |                                  |                                       |
| Serial number                            | Ep+ [Wh]                           | Ep- [Wh]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                                       |
| ₩08056                                   | 17,3                               | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                       |
|                                          | Fo+ NABhl                          | Fo- MABhl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C E total                        |                                       |
|                                          | 0.2                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G E abr                          |                                       |
|                                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C L UN                           |                                       |
|                                          | Cntr 0 [N]                         | Cntr 1 [N]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cntr 2 [N]                       |                                       |
| Dev. init                                | 0                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                |                                       |
| Calibration                              | State                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                       |
| Params                                   |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                       |
|                                          | ,                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                       |
| Device Clock                             | Records S                          | hala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | AutoBead                              |
| 2009.05.08 11:18:55                      | 1440 / 1440                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | Clear All                             |
| ☑ Davlight save +1h                      | 1                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | Develop                               |
|                                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                       |
| AutoSet                                  |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | Keag new                              |
| Device Address                           | Connection                         | <b>0</b> 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                       |
| Port Addre                               | ess                                | State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                                       |
|                                          |                                    | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                                       |
| <i>a</i>                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                       |

В левом верхнем углу левого верхнего окна сообщений в окне сообщений *Hardware Info* можно найти описательные данные, считанные из устройства; аппаратная и программная версия устройства, заводской номер, выходы приборов.

С помощью же кнопки в правом нижнем углу этого же самого окна сообщений *Params..* раскрывается окно диалога, служащее для настройки устройства (параметризации функций).

Программа VERA 2: описание пользователя



| THE VEDA                                |                                                                             |                                |
|-----------------------------------------|-----------------------------------------------------------------------------|--------------------------------|
| File Ports Devices Measure Options      | is Help                                                                     |                                |
| 📼 🎬 🍘 🚳 💀 🔝                             |                                                                             |                                |
| Vertesz TMTG 1E transducer 1 Vertesz    | TFM Device Parameters 🛛 🔀                                                   | 3 Vertess IEM P01 transducer 5 |
| Hardware Info                           | Communication Digital Inputs Impulse Inputs Synchron Signal and RTC Measure | o veresz in writer tansadcei_5 |
| Hardware                                | Limiters Digital Outputs Analog Outputs Maximum Guards                      |                                |
| Vertesz TMTG 1F v0.90                   | Maximum Guard Settings                                                      |                                |
| Device input configuration              |                                                                             |                                |
| 230.94V, 1A/5A                          | Lascade Maxguards                                                           |                                |
| Device output configuration             | May Guard 0 Source: May Guard 1 Source: May Guard 2 Source:                 |                                |
| Digi. Out 0, Digi. In 1, Ana. Out 1, An | Impulse Chtr 0 V Impulse Chtr 1 V Impulse Chtr 2 V                          |                                |
| Software version                        |                                                                             |                                |
| [1.01.0<br>Casislaumbar                 |                                                                             |                                |
|                                         |                                                                             |                                |
| 1                                       | Operating Period [s]: Operating Period [s]: Operating Period [s]:           |                                |
|                                         |                                                                             |                                |
|                                         | Limit [N] Limit [N]                                                         |                                |
|                                         |                                                                             |                                |
| THE WARDER                              |                                                                             |                                |
| Dev. Nr.                                |                                                                             |                                |
| Laibration                              |                                                                             |                                |
| Params                                  |                                                                             |                                |
| Device Clock                            |                                                                             |                                |
|                                         |                                                                             | _AutoRead                      |
| 2003.05.08 11:34:45                     |                                                                             | Clear All                      |
| Set now                                 |                                                                             | Read all                       |
| AutoSet                                 |                                                                             | Read new                       |
| Device Address                          | Load Save << >> Cancel OK                                                   |                                |
| Port                                    |                                                                             |                                |
| bőrönd 🗾                                | 32 Start Stop                                                               |                                |
|                                         |                                                                             |                                |
|                                         |                                                                             | 1                              |
| 🐉 Start 🛛 🗿 Beérkezett ü                | . 🙀 VERA 🖳 TMTG-If_telj 🔛 A TMTG - MIC 🔛 VERA2009 🚞 VERA                    | HU 🔇 🖉 🕎 🕲 🙆 11:34             |

Переход между страницами, относящимися к отдельным функциям, производится с помощью ушек, находящихся на верхней части окна, или можно передвигаться вперёд-назад между инструментами параметризации с помощью стрелок « » на нижней части окна сообщений. Кнопкой <u>Save</u> можно сохранить значения параметров. При сохранении, в качестве названия файла, автоматически предлагается заводской номер устройства. С помощью <u>Load</u> можно выбрать и переписать параметры других, уже сохранённых устройств TMTG-1f в данное устройство. Кнопкой же <u>OK</u> можно сохранить значения, заданные к данной функции.

С помощью <u>Device Params</u> – параметризации устройств – можно установить необходимые значения следующих параметров:

### 3.4.1 Коммуникация - Communication

Можно задать адрес ModBus устройства – ModBus address.

3.4.2 Дискретные входы – Digital Inputs



Непосредственно ко входам подключаются фильтры дребезга (по одному к каждому входу), отфильтрующие неопределённости механических переключающих элементов. Обегание дискретных входов фильтрами дребезга производится периодом в 1ms. Уровень считается стабильным, если *N* последовательно поступающих измерений имеют одно и то же значение. Значение <u>N</u> можно определить здесь для каждого входа – <u>Filter Length (N)</u>

| TEM Device Param                                            | otors               |              |                                             |             |           |
|-------------------------------------------------------------|---------------------|--------------|---------------------------------------------|-------------|-----------|
| Limiters                                                    | Digital Outputs     | Analog       | ) Outputs                                   | Maximu      | rn Guards |
| Communication                                               | Digital Inputs Imp  | pulse Inputs | Synchron Sign                               | nal and RTC | Measure   |
| Frell Filters<br>Filter 0 length (N)<br>3<br>Input 0 Invert | Filter 1 length [N] | F<br>•       | ilter 2 length [N]<br>3<br>- Input 2 Invert | ÷           |           |
| Digital sampler<br>Sampling Period                          | •                   |              |                                             |             |           |

Звеном дискретной выборки - <u>Digital Sampler</u> производятся выборки выходов фильтров дребезга - задаваемым периодом времени. Время периода может быть выбрано в раскрывающемся окне <u>Sampling Period</u>.

### 3.4.3 Импульсные входы – Impulse Inputs

Выборки выходов фильтров дребезга производятся импульсными фильтрами, согласно таблице параметров, периодом в 1ms. При переходе 1→0 выдаётся логический импульс, если предварительно длина уровня 1 была не меньше заданного минимального и не больше заданного максимального времени. Контроль превышения заданных предельных значений (минимума и максимума) может быть выключен, в этом случае выключенные значения не контролируются устройством. Если установленное максимальное время не превышает минимальное время, то установленное максимальное время устройством не учитывается.

| TFM Device Parame      | ters           |                    |            |                  |             | X        |
|------------------------|----------------|--------------------|------------|------------------|-------------|----------|
| Limiters               | Digital O      | utputs             | Analo      | og Outputs       | Maximu      | m Guards |
| Communication          | Digital Inputs | ; Impul            | lse Inputs | Synchron Sigr    | nal and RTC | Measure  |
| Impulse Filters        |                |                    |            |                  |             |          |
| Impulse Filter 0 Input | Imp            | pulse Filter 1 Inp | out        | Impulse Filter 2 | Input       |          |
| Prell Filter 0         | Pr             | ell Filter 1       | -          | Prell Filter 2   | •           |          |
| ,                      |                |                    |            |                  |             |          |
| Impulse Filter 0 Tmin  | Imp            | pulse Filter 1 Tm  | nin        | Impulse Filter 2 | Tmin        |          |
| 10 ms                  | <b>•</b> 10    | ) ms               | -          | 10 ms            | -           |          |
| None                   | <u>^</u>       |                    |            |                  |             |          |
| 1 ms<br>2 ms           | Imc            | oulse Filter 1 Tr  | nax        | Impulse Filter 2 | Tmax        |          |
| 5 ms                   |                | one                | -          | None             | -           |          |
| 10 ms                  |                |                    |            | ,                |             |          |
| 50 ms                  |                |                    |            |                  |             |          |
| In <u>(100 ms</u>      |                |                    |            |                  |             |          |
| Impulse counter 0 Inpr | ut Imr         | oulse counter 1    | Input      | Impulse counte   | r 2 Input   |          |
| Impulse Filter 0       | - In           | pulse Filter 1     | -          | Impulse Filter 2 | -           |          |
| 1                      |                |                    |            |                  |             |          |

Здесь можно определить область времени, считаемую логическим импульсом:



- <u>Impulse Filter: Tmin:</u> (none, 1, 2,5,10,20,50,100,200,500ms, 1,2,5,10,30s, 1min)

- <u>Impulse Filter Tmax</u> (none, 1, 2,5,10,20,50,100,200,500ms, 1,2,5,10,30s, 1min)

В устройствах ТМТG-1f имеется три счётчика импульсов – окно сообщений *<u>Impulse counters</u>*. Их входом может служить логический импульс. Из выпадающего меню можно выбрать пересчитываемый логический импульс:

| Limiters                  | Di       | igital Output: | s            | Ana       | alog () | lutputs          | Мая         | imum | Guards  |
|---------------------------|----------|----------------|--------------|-----------|---------|------------------|-------------|------|---------|
| Communication             | Digital  | Inputs         | Impul        | se Inputs |         | Synchron Sign    | nal and RTC |      | Measure |
| Impulse Filters           |          |                |              |           |         |                  |             |      |         |
| Impulse Filter 0 Input    |          | Impulse        | Filter 1 Inp | out       |         | Impulse Filter 2 | Input       |      |         |
| Prell Filter 0            | -        | Prell Filt     | er 1         | -         |         | Prell Filter 2   | -           |      |         |
|                           |          |                |              |           |         |                  |             |      |         |
| Impulse Filter 0 Tmin     |          | Impulse        | Filter 1 Tm  | nin       |         | Impulse Filter 2 | Tmin        |      |         |
| 10 ms                     | -        | 10 ms          |              | <b>•</b>  |         | 10 ms            | •           |      |         |
|                           |          |                |              |           |         |                  |             |      |         |
| Impulse Filter 0 Tmax     | :        | Impulse        | Filter 1 Tm  | ах        |         | Impulse Filter 2 | Tmax        |      |         |
| None                      | -        | None           |              | -         |         | None             | -           |      |         |
|                           |          |                |              |           |         |                  |             |      |         |
| Impulse Counters          |          |                |              |           |         |                  |             |      |         |
| laura da a completa O lau |          | les es de e    |              | lum a     |         |                  | - 0 June 4  |      |         |
| Impulse counter o In      | put      | Impuise        | counter I    |           | i       | Impulse counte   | r 2 input   |      |         |
| Impulse Filter U          | <u> </u> | Impulse        | Filter 1     | -         | J       | Impulse Filter 2 | •           |      |         |
| Impulse Filter 1          |          |                |              |           |         |                  |             |      |         |
| Impulse Filter 2          |          |                |              |           |         |                  |             |      |         |
| Synchron Impulse          |          |                |              |           |         |                  |             |      |         |
| Epn Impulse               |          |                |              |           |         |                  |             |      |         |
| Eqp Impulse               | ~        |                |              |           |         |                  |             |      |         |
| E qri impulse             | <u> </u> |                |              |           |         |                  |             |      |         |

- Impulse Filter внешние импульсы, соответствующие импульсным фильтрам,
- <u>Synchron</u> внешние синхронные импульсы, например, синхронный импульс счётчика электроэнергии, выдаваемый в каждую четверть часа.
- <u>Ерр impulse</u> (импульсы, соответствующие входной полученной активной энергии, измеренной устройством),
- <u>Ерп</u>- (импульсы, соответствующие выходной рекуперированной активной энергии, измеренной устройством),
- <u>Едр</u> (импульсы, соответствующие входной полученной реактивной энергии, измеренной устройством),
- Еqп (импульсы, соответствующие выходной рекуперированной реактивной энергии, измеренной устройством),
- SW Impulse generator импульсы, генерированные программой устройства (см. следующую главу),
- Registratum save ready impulse сохранены данные, записанные устройством в качестве событий,
- <u>RTC impulse</u> импульс, выданный часами реального времени (RTC real time clock) (возможные варианты: min - минута, QHr – четверть часа, Hr - час),

# *3.4.4* Синхронный сигнал, внутренние часы реального времени – Synchron signal and RTC

Устройства ТМТС обладают внутренними часами реального времени. В зависимости от установки устройство следит за изменениями,

соответствующими зимнему/летнему времени <u>(Automatic follow daylight save changes).</u>

Часы реального времени имеют логический импульсный выход, используемый для генерирования внутреннего синхронного сигнала или выходного синхроимпульса – *Adjust RTC on Sync.* 

Время периода импульсного выхода часов может быть установлено в трёх вариантах <u>Synchron Signal Source</u> – Источник синхронного сигнала в окне: <u>RTC Min Impulse</u> – минута, <u>RTC QHr</u> – четверть часа, <u>RTC Hr</u> - час.

| TFM Device Param                                                                                                                                                                                                        | ieters          |                |               |            |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|---------------|------------|----------|
| Limiters                                                                                                                                                                                                                | Digital Outputs | Analo          | og Outputs 🔰  | Maximum    | n Guards |
| Communication                                                                                                                                                                                                           | Digital Inputs  | Impulse Inputs | Synchron Sign | al and RTC | Measure  |
| Synchron Signal Setti<br>Synchron Signal S<br>RTC Min Impulse<br>Exp Impulse<br>Exp Impulse<br>Exp Impulse<br>SW Impulse<br>Respirateurn Saw<br>RE Min Impulse<br>RTC Min Impulse<br>RTC Hir Impulse<br>RTC Hir Impulse | ource           |                |               |            |          |

Часы могут быть синхронизированы любым логическим импульсом. Под действием выбранного импульса часы переставляются к следующей целой минуте.

| IFM Device Parame                                                                      | ters                  |      |            |               |             |          |
|----------------------------------------------------------------------------------------|-----------------------|------|------------|---------------|-------------|----------|
| Limiters                                                                               | Digital Outputs       |      | Anal       | og Outputs    | Maximu      | m Guards |
| Communication                                                                          | Digital Inputs        | Impu | lse Inputs | Synchron Sigr | nal and RTC | Measure  |
| -synchron Signal Setting<br>Synchron Signal So<br>RTC Min Impulse<br>I Adjust RTC on S | irce                  |      |            |               |             |          |
| Real Time Clock Setting                                                                | 9                     |      |            |               |             |          |
| 🔽 Automatic follow                                                                     | daylight save changes |      |            |               |             |          |

См. ещё: главу Часы устройства – *Device Clock* 

### *3.4.5* Измерение – Measure

В верхнем окне сообщений окна, изображённого на следующей картине, устанавливаются входные коэффициенты трансформации тока и напряжения, а в окне сообщений ниже – эквиваленты импульсов энергии.



| Limiters              | Digit      | al Outputs     | Analo           | og Outputs    | Maximur    | m Guards |
|-----------------------|------------|----------------|-----------------|---------------|------------|----------|
| Communication         | Digital In | puts Imp       | ulse Inputs     | Synchron Sign | al and RTC | Measure  |
| Transformers          |            |                |                 |               |            |          |
| Current (à /à)        |            | Voltage IV/V   | 1               |               |            |          |
| 5                     |            | 230.94         | · /             | 230.94        |            |          |
|                       |            | 1              |                 |               |            |          |
| Current input in use  |            |                |                 |               |            |          |
| C 1A                  |            |                |                 |               |            |          |
| G 5A                  |            |                |                 |               |            |          |
| 10 10                 |            |                |                 |               |            |          |
| Energie Impulse Value |            |                |                 |               |            |          |
| Impulse Value IWh/N   | 1          | Impulse fred I | N/h1@Pnom:      |               |            |          |
| 0.057735              | 1          | 20000          | inving een nome |               |            |          |
| 1                     |            | 1              |                 |               |            |          |
| O Ws O kWs            | :          |                |                 |               |            |          |
| GUL CHU               |            |                |                 |               |            |          |

Модуль измерения генерирует логические импульсы, число которых пропорционально четырём измеренным значениям энергии (<u>Ws, Wh, kWs, kWh)</u>. Они могут быть использованы как источники сигналов счётчиков импульсов или выходных генераторов импульсов. Эквивалент энергии логических импульсов (сколько энергии соответствует одному сигналу) может быть задан в таблице параметров - <u>Impulse value (Wh/N)</u>. Окно, расположенное рядом, <u>Impulse freq@Pnom</u> создаёт обратное значение, то есть частоту импульсов при номинальной мощности. (Это в качестве шага надёжности: в случае задания неправильных данных окно приобретает красный цвет.)

В самом нижнем окне сообщений устанавливается номинальное значение напряжения – *Nominal Voltage.* 

### 3.4.6 Дискретные выходы – Digital outputs

Источник генераторов импульсов выбирается в окне сообщений *Impulse Form Generators* в раскрывающихся окнах *Imp.Gen Source*.

В окне *Impulse Gen Twidth* задаётся приемлемая длина импульсов, а в окне *Impulse Gen. Trelax* – время паузы между импульсами.

| TFM Device Parameters   |                        |                                     |                               |             | X          |
|-------------------------|------------------------|-------------------------------------|-------------------------------|-------------|------------|
| Communication D         | igital Inputs          | Impulse Inputs                      | Synchron Sigr                 | nal and RTC | Measure    |
| Impulse Form Generators | Digital Outputs        |                                     | og o'ulpuls                   | Maximu      | im ciuaros |
| Imp. Gen. 0 Source      | Imp. Gen<br>Eqp Imp    | u 1 Source<br><mark>ulse _</mark> _ | Imp. Gen. 2 So<br>Eqn Impulse | urce        |            |
| Impulse Gen 0 Twidth    | Impulse 0              | Gen 1 Twidth<br>                    | Impulse Gen 2<br>10 ms        | Twidth      |            |
| Impulse Gen O Trelax    | Impulse 0              | Gen 1 Trelax                        | Impulse Gen 2<br>10 ms        | Trelax<br>▼ |            |
| 🖵 Invert                | Inver                  | t                                   | Invert                        |             |            |
| Digital Outputs         |                        |                                     |                               |             |            |
| Digi Output. 0 Source   | Digi Outp<br>Limiter 1 | out. 1 Source                       | Digi Output. 2 9<br>Limiter 2 | iource      |            |
| 🔲 Invert                | 🔲 Inver                | t                                   | ☐ Invert                      |             |            |



К дискретным выходам - <u>Digital Outputs</u> могут быть отнесены выходные сигналы генераторов импульсов (<u>Impulse Generator</u>), переключателей пределов (<u>Limiter</u>) и звеньев контроля превышения пределов (<u>Max Guard</u>). Путём отметки квадратика *Invert* для всех трёх выходов можно задать, чтобы выход работал по обратной логике вместо прямой (Напр. open-collector работал на отключение или включение.).

Записи – Registratum Options – файл не может быть параметризован, лишь частота записи может быть установлена.
 Значения измеренных величин записываются в память EEPROM. Под действием синхронного сигнала в память архив сохраняется массив, состоящий из средних мгновенных значений (*I*, *U*, *P*, *Q*, *S*, *PF*), промежуточных значений энергии и значений счётчиков импульсов. Ёмкость памяти - 1440 массивов. При заполнении памяти, новым массивом переписывается старший. Благодаря внутренним часам, массивы снабжены отметкой времени.

Источником синхронного сигнала для управления записью и обнулением промежуточных измерителей энергии и счётчиков импульсов могут быть дискретный вход или часы устройства (целая минута, целая четверть часа, целый час), или же запись регистра ModBus по линии RS485. Если источником синхронного сигнала являются не сами внутренние часы, можно задать, чтобы под действием синхронного сигнала часы были переставлены к ближайшей к актуальному времени целой минуте.

### 3.4.7 Переключатели предельных значений - Limiters

Входами трёх переключателей предельных значений могут быть измерения мгновенных и промежуточных значений энергии, а также — значения счётчиков импульсов. Для всех переключателей предельных значений можно задать - для каждого отдельно - порог переключения, гистерезис и полярность.



| - M Device Paramet                    | ers             |                      | 5                   |         |
|---------------------------------------|-----------------|----------------------|---------------------|---------|
| Communication                         | Digital Inputs  | Impulse Inputs Synch | nron Signal and RTC | Measure |
| Limiters                              | Digital Outputs | Analog Outputs       | Maximum (           | auards  |
| .imiter settings<br>Limiter 0 source: |                 |                      |                     |         |
| Current                               | 1               |                      | 🔲 Invert            |         |
| Limit [A]                             | <br>Limit [%]   | Hysteresis +/- [A]   | Hysteresis +/- [%]  |         |
| 4,5                                   | 90              | 0,5                  | 10                  |         |
|                                       |                 |                      |                     |         |
| · · · · ·                             |                 |                      |                     |         |
| 0 1                                   | 2               | 3 4                  | 5 6                 |         |
| linitar 1 annual                      |                 |                      |                     |         |
| Limiter i source:                     | ī               |                      | Invert              |         |
|                                       | Limit [%]       | Hustoresia ( D/I     | Hustorosia (7.1%)   |         |
| 207.846                               | 90              | 23 094               | 10                  | -       |
| 201,010                               | 100             | 120,001              | 11.0                |         |
|                                       |                 | 77777                | /////               | -       |
| 0 46,188                              | 3 92,376        | 138,56 184,75        | 230,94              |         |
|                                       |                 |                      |                     |         |
| Limiter 2 source:                     | 7               |                      | <b>F 1 1</b>        |         |
| Active Power                          |                 |                      | Invert              |         |
| Limit [kW]                            | Limit [%]       | Hysteresis +/- [kW]  | Hysteresis +/- [%]  |         |
| 1,03923                               | 90              | 0,11547              | 10                  |         |
|                                       |                 |                      |                     | -       |
| -1 1547k                              | -0.57735k       | 0k 0.57735k          | 1 1547k             |         |
| 1,104HK                               | o,orrook        | 0,01100              | , i,ioank           |         |
|                                       |                 |                      |                     |         |
|                                       |                 |                      |                     |         |

В трёх раскрывающихся окнах *Limiter Source* можно выбрать следующие источники пределов (кнопкой *Invert* можно выбирать нижний или верхний предел):

- *<u>I</u> – фазный ток*
- 4 *<u>Ptot, Qtot, Stot</u> активная, реактивная и полная мощность*
- *РЕТОТ* активный коэффициент мощности
- Iz, Ip, In симметричные составляющие тока (нулевая, положительная, отрицательная)
- *<u>ТНDi</u> полное гармоническое искажение тока*
- IO ток по нулевому проводу
- <u>ТНDи</u> полное гармоническое искажение фазного напряжения
- <u>
  <u>
  Р</u> активная мощность
  </u>
- 4 <u>Q</u> реактивная мощность
- 🖶 <u>S</u> полная мощность
- Ерр, Ерп, Qpp, Qpn активная и реактивная потребленная и рекуперированная энергия
- <u>Сntr0,1,2</u> счётчики импульсов
- 3.4.8 Звенья контроля превышения максимума Maximum Guards

Программа VERA 2: описание пользователя

42



В устройстве ТМТС 1F имеется три простых звена контроля превышения максимума. Они могут быть включены в каскадный режим работы <u>(Cascade Maxguards \_)</u>, таким образом, они работают в качестве одного трёхступенчатого звена контроля превышения максимума. В этом случае источниками сигнала могут быть только параметры, измеряемые устройством, т.к. возможно всего три I/O.

Если условием контроля превышения максимума является внешний источник сигнала, то остаётся лишь единственный выход переключения, ведь синхронный сигнал получается также от внешнего источника.

| VERA                                    |                        |                            |                                         |                                |
|-----------------------------------------|------------------------|----------------------------|-----------------------------------------|--------------------------------|
| File Ports Devices Measure Options      | Help                   |                            |                                         |                                |
| 🚥 🏗 阳 🚳 🐠 🔝                             | <b>7</b> m             |                            | _                                       |                                |
| Vertesz TMTG 1F transducer_1 Vertesz    | TFM Device Parameters  |                            | × * * * * * * * * * * * * * * * * * * * | 3 Vertesz IFM P01 transducer 5 |
| Hardware Info                           | Communication Dig      | ital Inputs   Impulse Inpu | ts Synchron Signal and RTC Measure      |                                |
| Hardware                                | Limiters               | Digital Outputs            | Analog Outputs Maximum Guards           |                                |
| Vertesz TMTG 1F v0.90                   | Maximum Guard Settings |                            |                                         |                                |
| Device input configuration              |                        |                            |                                         |                                |
| 230.94V, 1A/5A                          | j Lascade Maxguards    |                            |                                         |                                |
| Device output configuration             | May Guard 0 Source:    | May Guard 1 Source:        | May Guard 2 Source:                     |                                |
| Digi. Out 0, Digi. In 1, Ana. Out 1, An | Impulse Cotr 0         | Impulse Cotr 1             | Impulse Entr 2                          |                                |
| Software version                        |                        |                            |                                         |                                |
| 1.01.0                                  | Deadtime [s]:          | Deadtime [s]:              | Deadtime [s]:                           |                                |
| Serial number                           | 1300                   | 1300                       | 1300                                    |                                |
| 1400036                                 | Operating Period [s]:  | Operating Period [s]:      | Operating Period [s]:                   |                                |
|                                         | 900                    | 900                        | 900                                     |                                |
|                                         | Limit: [N]             | Limit: [N]                 | Limit: [N]                              |                                |
|                                         | 10000                  | 10000                      | 10000                                   |                                |
|                                         |                        |                            |                                         |                                |
| Dev. init                               |                        |                            |                                         |                                |
| Calibration                             |                        |                            |                                         |                                |
| Params                                  |                        |                            |                                         |                                |
|                                         |                        |                            |                                         |                                |
| Device Llock                            |                        |                            |                                         | AutoRead                       |
| 2009.05.08 13:05:10                     |                        |                            |                                         | Clear ôl                       |
| Daylight save +1h                       |                        |                            |                                         | Bood all                       |
|                                         |                        |                            |                                         |                                |
| Autoset                                 |                        |                            |                                         | Head new                       |
| Device Address                          | Load Save              |                            | << >> Cancel OK                         |                                |
| Port                                    | 22                     |                            |                                         | -                              |
|                                         |                        |                            | walcibi aliswel                         |                                |
|                                         |                        |                            |                                         |                                |
|                                         |                        |                            |                                         | 11                             |
| 🛃 Start 📃 🙆 Beérkezett üz               | VERA                   | TMTG-1f_telj 🛛 🖉 A 1       | 'MTG - Micr 🛛 🐏 VERA2009 - M 🛛 🗁 VERA   | HU 🔦 💐 🛒 😼 🔞 13:05             |

Звено контроля превышения максимума с момента запуска до истечения мёртвого времени *T*<sub>D</sub> (*Deadtime* устанавливаемого в таблице параметров) не работает.

По истечении мёртвого времени (окно Deadtime [s]) устройство осуществляет расчёт из входного сигнала. Если ожидается превышение заданного предела, то выход переключения звена контроля превышения переходит в состояние 1. Если превышение действительно наступает, то на выходе, сигнализирующем превышение, тоже появляется 1. Выход квитируется следующим синхронным сигналом. Требуемое время слежения задаётся в таблице параметров. (Окно Operating period). Его значение должно совпадать с периодом синхронного сигнала. Задать его нужно, потому что если синхронный сигнал имеет внешний источник, то для устройства не известна периодичность его прихода. Как правило, при электрических измерениях рассматривается согласованная мощность за



четверть часа = 900 сек, а при газовых измерениях – час=3.600 сек. Число импульсов (N), пропорциональное согласованной мощности, задаётся в окне *Limit (N)* 

### 3.4.9 Аналоговые выходы – Analog Outputs

Устройство имеет три аналоговых выхода. К каждому из них может быть отнесён один из формирователей характеристик.

| VERA                                    |                                                                             |                                |
|-----------------------------------------|-----------------------------------------------------------------------------|--------------------------------|
| File Ports Devices Measure Options      | s Help                                                                      |                                |
| 18 👔 🚳 🔹 🔝                              |                                                                             |                                |
| Vertesz TMTG 1F transducer_1 Vertesz    | TFM Device Parameters 🛛 🕹                                                   | 3 Vertesz IFM P01 transducer 5 |
| Hardware Info                           | Communication Digital Inputs Impulse Inputs Synchron Signal and RTC Measure | ·                              |
| Hardware                                | Limiters Digital Outputs Analog Outputs Maximum Guards                      |                                |
| Vertesz TMTG 1F v0.90                   | Analog characteristics                                                      |                                |
| Device input configuration              | Characteristic U   Characteristic 1   Characteristic 2                      |                                |
| 230.94V, 1A/5A                          | Source                                                                      |                                |
| Device output configuration             | Active Power 💌                                                              |                                |
| Digi. Out 0, Digi. In 1, Ana. Out 1, An | PL0 [kW] 20mA                                                               |                                |
| Software version                        |                                                                             |                                |
| 1.01.0                                  | lout [mA] @ P L0 16 mA                                                      |                                |
| Serial number                           |                                                                             |                                |
| V08056                                  | P HI [kW] 12 mA                                                             |                                |
|                                         | 1,1947                                                                      |                                |
|                                         |                                                                             |                                |
|                                         |                                                                             |                                |
|                                         | 1 4 mA                                                                      |                                |
| Dev. init                               | Imax (má)                                                                   |                                |
| Calibration                             | 24 UMA                                                                      |                                |
| Deserve                                 | 1,134/K 0,3/135 0K 0,3/135 K 1,134/K                                        |                                |
| Params                                  |                                                                             |                                |
| Device Clock                            | And g outputs                                                               |                                |
| [                                       | Output 0 Source Output 1 Source Output 2 Source                             | _AutoRead                      |
| 2009.05.08 13:05:52                     | None None 💌                                                                 | <u>Clear All</u>               |
| ✓ Daylight save +1h Set now             |                                                                             | Read all                       |
| AutoSet                                 |                                                                             | Read new                       |
| - Davias Address                        |                                                                             |                                |
| Port                                    | Load Save Cancel UK                                                         |                                |
| bőrönd 👻                                | 32 Start Stop OK                                                            |                                |
|                                         |                                                                             |                                |
|                                         |                                                                             |                                |
|                                         |                                                                             | 1                              |
| 🛃 Start 🚺 🙆 Beérkezett üz               | . 📸 VERA 🖳 TMTG-1f_telj 🖓 A TMTG - Micr 🖓 VERA2009 - M 🗁 VERA               | HU 🔇 🚔 🌉 😼 🙆 13:05             |

Образование выходных токов, соответствующих измеренным величинам, обеспечивается тремя аналоговыми формирователями характеристик. Входной величиной трёх аналоговых формирователей характеристик может быть любой результат измерения. Можно определить линейную характеристику с нижним и верхним уровнем насыщения. Если на выходе требуется стандартный аналоговый сигнал, то целесообразно установить следующие значения:

- -20 +20 mA
- 0-20 mA
- 4-20 mA
- 0-5 mA

В окне сообщений *Analog Characteristics* можно выбрать параметризуемый аналоговый выход из выходов 0, 1, или 2 (ушко <u>0., 1., 2. Characteristic</u>).



# В раскрывающемся окне можно выбрать параметр, значения которого требуется анализировать аналоговыми сигналами.



Если, например, на аналоговом выходе нужно получить суммарную реактивную мощность Qtot, но нам нужна только индуктивная реактивная мощность, то данные устанавливаются следующим образом:

- <u>Qtot [VAR] LO</u> пусть нижнее значение Q = 0 VAR, этому на аналоговом выходе будет соответствовать 0 mA <u>(lout[mA@l LO</u>).
- Программой VERA на основе входных значений, уже заданных для измерений <u>Measure</u> – (в данном случае 5 A, и 230,94 V) вычисляется номинальное значение Q – равное 3,4661 kVar (что изображено на абсциссе X графика). Это значение автоматически записывается в окно <u>Qtot[VAR] HI</u>, а в графу lout[mA]@I HI, расположенную под ним, записывается значение 20 mA (верхний предел стандартного аналогового сигнала).

Требуется однако, чтобы 20 mA соответствовало 2500 VAR, поэтому в указанных двух окнах записываются эти значения.

 В нижних двух окнах (*Imin, Imax*) соответственно можно срезать нижний и верхний предел. В настоящем примере внизу получается 0, а наверху обычный Imax\*1,2=24 mA.

В окне сообщений <u>Analog outputs</u> в раскрывающемся окне можно выбрать, к какой характеристике <u>(0,1,2. Characteristic</u>) отнести выход.

### 3.4.10 Часы устройства – Device Clock

Устройства ТМТС имеют внутренние часы реального времени. В зависимости от установки, устройством учитывается зимнее/летнее время. Часы могут быть синхронизированы любым логическим импульсом (кроме собственного импульса и синхронного сигнала). Под действием выбранного импульса часы переставляются к следующей целой минуте.



Если щёлкнуть на клавишу – *Device Clock - Set now* – то устройство синхронизируется к часам компьютера.

## 3.5 Датчик DCMTE

Устройство DCMTE служит для измерения и записи токов, напряжений, мощности и потребления электроэнергии в трёх, гальванически не зависимых сетях номинального напряжения 600VDC.

В окне сообщений *Device Info* в левом верхнем углу левого верхнего окна сообщений показаны общие данные, считанные из устройства.

Если щёлкнуть на клавишу – <u>Device Clock - Set now</u> левого нижнего окна сообщений, то устройство синхронизируется к часам компьютера.

|                                        | · · · · · · · · · · · · · · · · · · · |                                         |                              |                                 |           |
|----------------------------------------|---------------------------------------|-----------------------------------------|------------------------------|---------------------------------|-----------|
| 🚥 🎬 🌇 🚳 🐠 🔝                            | T RE                                  |                                         |                              |                                 |           |
| Vertesz TMTG 3E transducer 0 Vertesz T | TyyP/D transducer 4 Vertesz TITy      | vP/D transducer 3 Vertesz IEM           | P01 transducer 5 Vertesz DCM | TE transducer 6 ModBus tester 7 | ٦.        |
| Device info                            | Measure data                          |                                         |                              |                                 |           |
| Hardware                               | U1 [V]                                | U2 [V]                                  | U3[V]                        |                                 |           |
| Vertesz DCMTE v1.00                    |                                       |                                         |                              |                                 |           |
| Serial number                          | 0,0                                   | 0,0                                     | 0,0                          |                                 |           |
| ∨05006                                 | l                                     | l.                                      | 1                            |                                 |           |
| Analog input hardware                  | 11 [A]                                | 12 [A]                                  | 13 [A]                       |                                 |           |
| Software version                       | -20,8                                 | 0,0                                     | 0,0                          |                                 |           |
| 1.02.4896                              |                                       |                                         |                              |                                 |           |
| ,                                      | P1 [kW]                               | P2 [kW]                                 | P3 [kW]                      |                                 |           |
|                                        | 0.0                                   | 0.0                                     | 0.0                          |                                 |           |
|                                        | 0,0                                   | 0,0                                     | 0,0                          |                                 |           |
|                                        |                                       |                                         |                              |                                 |           |
|                                        | F1n (kWh)                             | E2n [kWh]                               | E3n [kWh]                    |                                 |           |
| Settings                               | 126.4                                 | 0.0                                     | 0.0                          |                                 |           |
| Channels                               | F1n (kwh)                             | F2n [kw/b]                              | F3n [kW/b]                   |                                 |           |
| Calibrate                              | 0.6                                   | 0.0                                     | 0.0                          |                                 |           |
| Change SW                              | 1 070                                 | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | , ,,,                        |                                 |           |
| - Davias Clask                         | - Decender                            |                                         |                              |                                 |           |
| Device Clock                           | Period [min]                          | Record count                            | State                        |                                 | AutoRead  |
| 2009.05.07. 10:16:16                   | 15                                    | 1/10                                    | Read completed               |                                 | Clear All |
| Set now                                |                                       |                                         |                              |                                 | Read all  |
| AutoSet                                | Change                                |                                         |                              |                                 | Read new  |
|                                        | ·                                     |                                         |                              |                                 |           |
| Port Address                           | dress                                 | State                                   |                              |                                 |           |
| Usb 💌 64                               | Start                                 | Stop OK                                 |                              |                                 |           |
|                                        |                                       |                                         |                              |                                 |           |
|                                        |                                       |                                         |                              |                                 |           |
|                                        |                                       |                                         |                              |                                 | 111       |

В среднем окне можно видеть данные напряжения, тока и мощности трёх входных каналов, а также значения потребления и рекуперации *E1-3p, E1-3n*, измеренные в kWh.

В окне сообщений *Records* можно задать время периода (*Period [min]*) записи массивов измерения в пределах 1-15 мин, шагами в 1 мин. *Record count* показывает число считанных/всех записей, а окно *State* – состояние считывания.

Считывание и удаление массивов возможно для уполномоченных пользователей с помощью четырёх ячеек AutoRead, Clear All, Read All és Read new, изображённых серым цветом. AutoRead при наличии связи непрерывно считывает данные. Read All считывает все массивы, записанные в памяти Flash. Read new считывает ещё не считанные данные. Clear All же удаляет все записанные массивы.

Все массивы содержат следующие значения:

- время записи массива,
- минимальные, средние и максимальные значения отдельных величин измерения (*U*, *I*, *P*) за замкнутый период измерения,
- актуальные при записи значения счётчиков энергии.

## 3.6 Датчики ТІТххР

Устройства TITxxP служат для измерения реальных действующих значений сигналов тока и напряжения на сетях низкого напряжения, а также аналоговой (генератор тока) и дискретной (RS485) передачи измеренных сигналов.

Устройство обеспечивает гальваническое разделение между измеряемым сигналом и остальной частью устройства.

В настоящем примере видна версия, подключённая к трансформатору тока 1А, но существует также версия TIT-xxD, при которой прямое измерение возможно в области 0-25 А или даже 0-50 А.

| YERA                                                                                                                                                                                        |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| e Ports Devices Measure Options Help                                                                                                                                                        |      |
|                                                                                                                                                                                             |      |
| ertesz TMTG 1F transducer_1   Vertesz TMTG 3F Wave analizer_2   Vertesz TMTG 3F transducer_0   Vertesz TITxxP/D transducer_4   Vertesz TITxxP/D transducer_3   Vertesz IFM P01 transducer_5 |      |
| Hardware Info Measure Data                                                                                                                                                                  |      |
| Hardware                                                                                                                                                                                    |      |
| Vertesz TI/T10/20P v2.00                                                                                                                                                                    |      |
| Aardware Configuration I [A]                                                                                                                                                                |      |
| Duti: Upen Collector: Dut2: R5485                                                                                                                                                           |      |
|                                                                                                                                                                                             |      |
| Vocasional Vocasion                                                                                                                                                                         |      |
| 1.00.0                                                                                                                                                                                      |      |
|                                                                                                                                                                                             |      |
|                                                                                                                                                                                             |      |
|                                                                                                                                                                                             |      |
|                                                                                                                                                                                             |      |
|                                                                                                                                                                                             |      |
|                                                                                                                                                                                             |      |
|                                                                                                                                                                                             |      |
| Calibration                                                                                                                                                                                 |      |
| Setting                                                                                                                                                                                     |      |
|                                                                                                                                                                                             |      |
|                                                                                                                                                                                             |      |
|                                                                                                                                                                                             |      |
|                                                                                                                                                                                             |      |
|                                                                                                                                                                                             |      |
|                                                                                                                                                                                             |      |
| Jevice Address Connection Connection                                                                                                                                                        |      |
| bőrönd 👻 60 🕂 Start Stop 🛛 🕅                                                                                                                                                                |      |
|                                                                                                                                                                                             |      |
|                                                                                                                                                                                             |      |
| 🖌 Start 💿 Beérkezett üzenet 🖆 2 Windows Intéző , 🕱 Microsoft Excel - N 🔛 Szakmai - Microsof 👸 VERA HU 🔦 🗾 😒 🧐 🦉 🔼 12                                                                        | 2:27 |

Устройства опционально имеют два выхода open-collector, которые могут работать переключателями предельных значений. Это относится также к версии TIT-xxD.

В окне сообщений <u>*Hardware Info*</u> в левом верхнем углу левого верхнего окна сообщений показаны описательные данные, считанные из устройства.

Программа VERA 2: описание пользователя



Щёлчком на кнопку <u>Settings раскрывается окно, где можно задать нижний (Turn on when lower)</u> и верхний (<u>Turn on when higher</u>) предел значений, при котором open-collector-ы срабатывают. Здесь можно задать также значение гистерезиса.

| 😰 VERA                                                   |                                                                                           |                                      |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------|
| File Ports Devices Measure Options Help                  |                                                                                           |                                      |
| 🚥 🏭 🕲 🕸 🔝 📰                                              |                                                                                           |                                      |
| Vertesz TMTG 1F transducer_1   Vertesz TMTG 3F Wave anal | izer_2 Vertesz TMTG 3F transducer_0 Vertesz TITxxP/D transducer_4 Vertesz TITxxP/D transd | lucer_3 Vertesz IFM P01 transducer_5 |
| Hardware Info                                            |                                                                                           |                                      |
| Hardware                                                 |                                                                                           |                                      |
| Vertesz TIT10/20P v2.00                                  |                                                                                           |                                      |
| Hardware Configuration I [A]                             |                                                                                           |                                      |
| Out1: Open Collector; Out2: RS485                        |                                                                                           |                                      |
| Serial number                                            | 1 702                                                                                     |                                      |
| V08233                                                   |                                                                                           |                                      |
| Software version                                         | III Settings                                                                              |                                      |
| 1.00.0                                                   | Input Digital Output                                                                      |                                      |
|                                                          | Uutput settings<br>Husteresis                                                             |                                      |
|                                                          | 0.01                                                                                      |                                      |
|                                                          | 1                                                                                         |                                      |
|                                                          | Output 1 level [A] Mode                                                                   |                                      |
|                                                          | 0,2 C Turn Off                                                                            |                                      |
|                                                          | C Turn On                                                                                 |                                      |
|                                                          | (• Turn On when lower                                                                     |                                      |
| Calibration                                              | 0 0,2 0,4 0,6 0,8 1 1,2                                                                   |                                      |
| Settings                                                 | Output 2 level [A]                                                                        |                                      |
|                                                          | 0,8 C Turn Diff                                                                           |                                      |
|                                                          | C Turn On                                                                                 |                                      |
|                                                          | C Turn On when lower                                                                      |                                      |
|                                                          | 0 0,2 0,4 0,6 0,8 1 1,2 • Turn On when higher                                             |                                      |
|                                                          |                                                                                           |                                      |
|                                                          | Cancel OK                                                                                 |                                      |
| Device Address                                           |                                                                                           |                                      |
| Port Address                                             | State                                                                                     |                                      |
| bőrönd 💽 60 📩                                            | Start Stop Wait for answer                                                                |                                      |
|                                                          |                                                                                           |                                      |
|                                                          |                                                                                           |                                      |
| 🛃 Start 💿 Beérkezett üzenet 🛅 4 Wind                     | dows Intéző 🕞 🔀 Microsoft Excel - N 🕅 2 Microsoft Offic 🚽 🚟 VERA                          | HU 🏈 🛃 🗟 🧐 🌉 🗖 12:41                 |